Mini review on diarylquinolone compound Bedaquiline and some other quinolone derivatives and their antitubercular activity

  • Mohammad Asif Department of Pharmacy, GRD (PG) Institute of Management & Technology, 248009, Dehradun, (Uttarakhand)
  • Amarjeet Kaur Department of Pharmacy, GRD (PG) Institute of Management & Technology, 248009, Dehradun, (Uttarakhand)
Keywords: Tuberculosis, Bedaquiline, Diarylquinolone, Antitubercular drug

Abstract

The strategies design for new anti-tuberculosis (anti-TB) compounds is based on the development of analogs of currently used drugs and novel compounds. The strategies employed and analyze structural features which have led to the development of new anti-TB agents. It is important to determine if compounds have potential activity against these bacteria at the onset of design. The physicochemical properties that directly affect the pharmacokinetics and pharmacodynamics of drugs, influence of stereoisomers on biological activity, because individual enantiomers have significant differences in activity, although sometimes the activity of some enantiomers cannot be explained. In this article, detailed study of diarylquinoline and some other quinoline compounds have been reported.

Downloads

Download data is not yet available.

References

Zhang, Y. The magic bullets and tuberculosis drug targets. Ann Rev Pharmacol & Toxicol, 2005; 45, 529-564.

Asif M, Siddiqui AA, Husain A. Quinolone derivatives as antitubercular drugs. Med Chem Res, 2013; 22(3): 1029-1042.

Asif M. Rifampin and Their Analogs: A Development of Antitubercular Drugs. World J Org Chem, 2013; 1(2): 14-19.

Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, Blakemore SJ, Duncan K. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents & Chemother, 2003; 47(9): 2903-2913.

Janin YL. Antituberculosis drugs: ten years of research. Bioorg & Med Chem, 2007; 15(7), 2479-2513.

Shi, R, Sugawara, I. Development of new anti-tuberculosis drug candidates. The Tohoku J Exp Med, 2010; 22(2): 97-106.

Zhang Y. Persistent and dormant tubercle bacilli and latent tuberculosis. Frontiers Bioscience, 2004; 1(9):1136-1156.

Zhang, Y, Post-Martens, K, Denkin, S. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov Today, 2006; 11(1): 21-27.

Cole, ST, Alzari PM. Towards new tuberculosis drugs. Biochemical Society Transactions, 2007; 35(5): 1321-1324.

Dye C. Global epidemiology of tuberculosis. Lancet, 2006; 367(9514): 938-40.

Zhang, Y, Amzel, LM. Tuberculosis drug targets. Current Drug Targets, 2002; 3(2): 131-154.

de Souza MVN, Pais KC, Kaiser CR, Peralta MA, Ferreira ML, Lourenço MCS. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem, 2009; 17(4): 1474-1480.

Barry CE III. Unorthodox approach to the development of a new antituberculosis therapy. N Engl J Med, 2009; 360:2466–2467.

Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O'Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA. American Thoracic Society, Centers for Disease Control and Prevention and the Infectious Diseases Society. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Resp & Crit Care Med, 2003; 167(4): 603-662.

Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Structure-Activity Relationships for a Series of Quinoline-Based Compounds Active against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem, 2009; 52(7): 2109-2118.

Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005; 307:223–227

Matteelli A, Carvalho AC, Dooley KE, Kritski A. TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol, 2010; 5: 849–858

Arjona A. TMC-207 mycobacterial ATP synthase inhibitor treatment of tuberculosis. Drugs Future, 2008; 33: 1018–1024

Upadhayaya RS, Vandavasi JK, Kardile RA, Lahore SV, Dixit SS, Deokar HS, Shinde PD, Sarmah MP, Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent

antimycobacterial agents. Eur J Med Chem, 2010; 45:1854–1867

Upadhayaya RS, Vandavasi JK, Vasireddy NR, Sharma V, Dixit SS, Chattopadhyaya J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem, 2009; 17(11): 2830-2841.

Huitric, E, Verhasselt, P, Andries, K, Hoffner, S.E. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother. 2007, 51, 4202–4204.

Huitric, E, Verhasselt, P, Koul, A, Andries, K, Hoffner, S, Andersson, D.I. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother. 2010; 54: 1022–1028.

Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, Mc Neeley DF. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med, 2009; 360: 2397–2405.

Rustomjee R, Diacon AH, Allen J, Venter A, Reddy C, Patientia RF, Mthiyane TC, De Marez T, van Heeswijk R, Kerstens R, Koul A, De Beule K, Donald PR, McNeeley DF. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008; 52: 2831–2835.

Diacon, A.H, Dawson, R, von Groote-Bidlingmaier, F, Symons, G, Venter, A, Donald, P.R, van Niekerk, C, Everitt, D, Winter, H, Becker, P, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A randomised trial. Lancet, 2012; 380: 986–993.

Haagsma, A.C, Abdillahi-Ibrahim, R, Wagner, M.J, Krab, K, Vergauwen, K, Guillemont, J, Andries, K, Lill, H, Koul, A, Bald, D. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother. 2009; 53: 1290–1292.

Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, Ristic Z, Lill H, Dorange I, Guillemont J, Bald D, Andries K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol, 2007; 3:323–324.

Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Gohlmann HW, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem, 2008; 283:25273–25280.

Petrella, S, Cambau, E, Chauffour, A, Andries, K, Jarlier, V, Sougakoff, W. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob. Agents Chemother. 2006; 50: 2853–2856.

Segala, E, Sougakoff, W, Nevejans-Chauffour, A, Jarlier, V, Petrella, S. New mutations in the mycobacterial ATP synthase: New insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob. Agents Chemother. 2012; 56: 2326–2634.

Gaurrand S, Desjardins S, Meyer C, Bonnet P, Argoullon JM, Oulyadi H, Guillemont J. Conformational analysis of r207910, a new drug candidate for the treatment of tuberculosis, by a combined NMR and molecular modeling approach. Chem Biol Drug Des, 2006; 68:77–84.

Petit S, Coquerel G, Meyer C, Guillemont J Absolute configuration and structural features of R207910, a novel anti-tuberculosis agent. J Mol Struct, 2007; 837:252–256.

Lounis N, Guillemont J, Veziris N, Koul A, Jarlier V, Andries K. R207910 (TMC207): A new antibiotic for the treatment of tuberculosis. Me´d Mal Infect, 2010; 40: 383–390.

Lounis N, Gevers T, Van Den Berg J, Andries K. Impact of the interaction of R207910 with rifampin on the treatment of tuberculosis studied in the mouse model. Antimicrob Agents Chemother, 2008; 52: 3568–3572.

Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob Agents Chemother, 2006; 50: 3543–3547.

De Jonge MR, Koymans LH, Guillemont JE, Koul A, Andries K. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins. 2007; 67: 971–980.

Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N. Sterilizing activity of R207910 (TMC207)-containing regimens in the murine model of tuberculosis. Am J Respir Crit Care Med, 2009; 180: 553–557.

Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, Orme IM, Basaraba RJ. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother, 2007; 51:3338–3345.

Veziris N, Ibrahim M, Lounis N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V. A once-weekly R207910-containing regimen exceeds activity of the standard daily regimen in murine tuberculosis. Am J Respir Crit Care Med, 2009; 179:75–79.

Tibotec-Virco Virology BVBA Clinical Trial. A Phase II, Open-Label Trial With TMC207 as Part of a Multi-drug Resistant Tuberculosis (MDR-TB) Treatment Regimen in Subjects with Sputum Smear-positive Pulmonary Infection with MDR-TB. Clinical Trial NCT00910871. Sponsored by Tibotec BVBA. Accessed from National Library of Medicine and National Institutes of Health (US), 2009; ClinicalTrials.gov

Webb S. Public-private partnership tackles TB challenges in parallel. Nat Rev Drug Discov, 2009; 8: 599–600.

Chahine EB, Karaoui LR, Mansour H. Bedaquiline: A novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 2014, 48: 107–115.

Eswaran S, Adhikari AV, Pal NK, Chowdhury IH. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 2010; 20(3): 1040-1044.

Jain R, Vaitilingam B, Nayyar A, Palde PB. Substituted 4-Methylquinolines as a New Class of Anti-Tuberculosis Agents. Bioorg. Med. Chem. Lett. 2003; 13(6): 1051-1054.

Nava-Zuazo, C, Estrada-Soto, S, Guerrero-Alvarez, J, Leon-Rivera, I, Molina-Salinas, GM, Said-Fernández, S, Chan-Bacab, MJ, Cedillo-Rivera, R, Moo-Puc, R, Mirón-Lopez, G, Navarrete-Vázquez, G. Design, synthesis and in vitro anti protozoal, antimycobaterial activities of N-{2-[(7-chloroquinolin-4-yl)amino]ethyl} ureas. Bioorg & Med Chem, 2010; 18(17): 6398-6403.

Nayyar A, Patel SR, Shaikh M, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines. Eur. J. Med. Chem, 2009; 44(5): 2017-2029.

Palomino, J.C, Martin, A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol. 2013; 8: 1071–1080.

Savini L, Chiasserini L, Gaeta A, Pellerano C. Synthesis and Anti-tubercular Evaluation of 4-Quinolylhydrazones. Bioorg. Med. Chem, 2002; 10(7): 2193-2198.

Eswaran, S, Adhikari, AV, Chowdhury, IH, Pal, NK, Thomas, K. New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem, 2010; 45(8): 3374-3383.

Eswaran, S, Adhikari, AV, Kumar, R. New 1,3-oxazolo[4,5-c]quinoline derivatives: Synthesis and evaluation of antibacterial and antituberculosis properties. Eur J Med Chem, 2010; 45(3): 957-966.

Goncalves, RS, Kaiser, CR, Lourenco, MC, de Souza, MV, Wardell, JL, Wardell, SM, da Silva, AD. Synthesis and antitubercular activity of new mefloquineoxazolidine derivatives. Eur J Med Chem, 2010; 45(12): 6095-6100.

Mao, J, Yuan, H, Wang, Y, Wan, B, Pak, D, He, R, Franzblau, SG. Synthesis and anti-tuberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorg & Med Chem Lett, 2010; 20(3): 1263-1268.

Yang, CL, Tseng, CH, Chen, YL, Lu, CM, Kao, CL, Wu, MH, Tzeng, CC. Identification of benzofuro[2,3-b]quinoline derivatives as a new class of antituberculosis agents. Eur J Med Chem, 2010; 45(2): 602-607.

Wube, AA, Hufner, A, Thomaschitz, C, Blunder, M, Kollroser, M, Bauer, R, Bucar, F. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg & Med Chem, 2011; 19(1): 567-579.

Pieroni M, Lilienkampf A, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Synthesis, Biological Evaluation, and Structure-Activity Relationships for 5-[(E)-2-Arylethenyl]-3-isoxazolecarboxylic Acid Alkyl Ester Derivatives as Valuable Antitubercular Chemotypes. J. Med. Chem, 2009; 52(20): 6287-6296.

Mamolo MG, Zampieri D, Vio L et al. Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4-oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations. Bioorg. Med. Chem, 2005; 13(11): 3797-3809.

Drews SJ, Hung F, Av-Gay Y. A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol. Lett, 2004; 205(2): 369-374.

de Souza MVN, Pais KC, Kaiser CR, Peralta MA, Ferreira ML, Lourenço MCS. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem, 2009; 17(4): 1474-1480.

Sharma M, Chaturvedi V, Manju YK et al. Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem, 2009; 44(5): 2081-2091.

Monga V, Nayyar A, Vaitilingam B et al. Ring-substituted quinolines. Part 2: Synthesis and antimycobacterial activities of ring-substituted quinolinecarbohydrazide and ring-substituted quinolinecarboxamide analogues. Bioorg. Med. Chem, 2004; 12(24): 6465-6472.

Gratraud P, Surolia N, Besra GS, Surolia A, Kremer L. Antimycobacterial Activity and Mechanism of Action of NAS-91. Antimicrob. Agents Chemother, 2008; 52(3): 1162-1166.

Gemma S, Savini L, Altarelli M et al. Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure–activity relationship studies. Bioorg. Med. Chem, 2009; 17(16): 6063-6072.

Candéa ALP, Ferreira ML, Pais KC et al. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett, 2009; 19(22): 6272-6274.

Nayyar A, Patel SR, Shaikh M, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines. Eur. J. Med. Chem., 2009; 44(5): 2017-2029.

Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Structure-Activity Relationships for a Series of Quinoline-Based Compounds Active against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem, 2009; 52(7): 2109-2118.

Mao J, Yuan H, Wang Y et al. From Serendipity to Rational Antituberculosis Drug Discovery of Mefloquine-Isoxazole Carboxylic Acid Esters. J. Med. Chem, 2009; 52(22): 6966-6978.

Published
2015-05-31
Section
Review Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.