Critical environmental factors for photosynthetic organisms of the Shardara Reservoir, Kazakhstan

  • Sophia Barinova Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba Khoushi Ave., Haifa 3498838
  • Elena Krupa Republican State Enterprise on the Right of Economic Use "Institute of Zoology", Ministry of Education and Science, Science Committee, Almaty, Republic of Kazakhstan, 050060
Keywords: Phytoplankton, macrophytes, environmental factors, Shardara Reservoir, South Kazakhstan

Abstract

In summer 2015, the distribution of structural indicators of phytoplankton and the macrophytes overgrowth in the Shardara Reservoir's water independent of external factors was studied. Phytoplankton was represented by 78 species; green algae dominated. The abundance of community was 544.0 mln. cells m-3, with biomass at 626.1 mg m-3. Macrophytes Potamogeton natans L. and Potamogeton malajanus L. massively developed on the eastern shallow parts and in bays of the southwestern part of the reservoir. Our research showed that the biotopes inhabited by macrophytes were generally characterized by relatively higher concentrations of nitrite, phosphate, and zinc. The structure of phytoplankton was dependent on many factors, among which the most important were the water temperature and heavy metals. The warm-water status of the Shardara Reservoir was reflected in the dominance of green algae and dinoflagellates. With relatively high concentrations of heavy metals in the ecosystem, their impact on phytoplankton was neutralized by the complex nature of pollution, which included the increased number of organic substances. The impact of toxicants was not traced when analyzing the diversity and abundance of phytoplankton. The prevalence of facultative heterotrophs among the diatoms served as an indirect indication of the presence of toxic substances in the ecosystem. The dimensional structure of phytoplankton changed under the influence of cadmium in size reduction, and that may be the adaptive restructuring of the community in response to the toxic stress. Therefore, we may emphasize the essential indicative importance of size parameters of communities, including the Clarke's W-statistics and Δ-Shannon-Weaver.

Downloads

Download data is not yet available.

References

[1] Climate data for cities worldwide. http://en.climate-data.org/location/485/ [avail. 29 Dec 2016].
[2] Mazurov AK. Metallogenic zoning of Kazakhstan [Metallogenicheskoe raionirovanie Kazahstana]. Bulletin of the Tomsk Polytechnic University 2005; 308(4): 9–33. (In Rus.)
[3] Semenova AD, editor. Guideline for chemical analysis of surface water [Rykovodstvo po himicheskomy analizy poverhnostnih vod sushi]. Leningrad: Gidrometeoizdat; 1977. (In Rus.)
[4] Fomin GS. Water. Control of chemical, bacterial and radiation safety according to international standards [Voda. Kontrol himicheskoi, bakteriologicheskoi i radiologicheskoi bezopasnosti po mejdynarodnim standartam]. Moscow: NGO "Alternative"; 1995. (In Rus.)
[5] Kimstach VA. Classification of surface water quality in the European Economic Community countries [Klassifikaciya kachestva poverhnostnyh vod v stranah Evropeiskogo Ekonomicheskogo Soyuza]. St. Petersburg: Gidrometeoizdat; 1993. (In Rus.)
[6] Bespamyatnov GP, Krotov YA. Maximum permissible concentrations of chemicals in the environment [Predelno dopustimie koncentracii himicheskih veschestv v okrujayuschei srede]. Leningrad: Chemistry; 1985. (In Rus.)
[7] Klisenko MA, Kalinina AA, Novikova KF and others. Methods for determination of trace amounts of pesticides in food, feed and environment [Metody opredeleniya mikrokolichestv pesticidov v produktah pitaniya, kormah i vneshnei srede]. Moscow: Kolos; 1992. V. 1–2. (In Rus.)
[8] Dolzhenko VI. Guidelines for determination of pesticide residues in food products, agricultural raw materials, herbal products and in objects of environment [Metodicheskie ukazaniya po opredeleniyu ostatochnyh kolichestv pesticidov v pischevyh produktah, selskohozyaistvennom sire, prodyktah rastitelnogo proishojdeniya i objektah okrujajuschei sredy]. St. Petersburg; 2008. (In Rus.)
[9] Bankina TA, Petrov MY, Petrova TM, Bankin MP. Chromatography in agroecology. [Hromatografiya v agroekologii]. St. Petersburg; 2002. (In Rus.)
[10] Kiselev IA. Methods of study of plankton. Life of freshwaters of the USSR. [Metody issledovaniya planktona. Jizn presnyh vod SSSR]. Vol. 4. Moscow, Leningrad: USSR Academy of Sciences; 1956. (In Rus.)
[11] Gollerbach MM, Kossinskaya EK, Polyansky VI. Key to freshwater algae of USSR. Vol. 2. Blue-green algae. [Opredelitel presnovodnyh vodoroslei SSSR. Sine-zelenye vodorosli]. Moscow: Soviet Science; 1953. (In Rus.)
[12] Zabelina MM, Kiselev IA, Proshkina–Lavrenko AI, Sheshukova VS. Key to freshwater algae USSR. Vol. 4. Diatoms. [Opredelitel presnovodnyh vodoroslei SSSR. Diatomovye vodorosli]. Moscow: Soviet Science; 1951. (In Rus.)
[13] Popova TG. Key to freshwater algae USSR. Vol. 7. Euglenophyta. [Opredelitel presnovodnyh vodoroslei SSSR. Evglenovye vodorosli]. Moscow: Soviet Science; 1955. (In Rus.)
[14] Moshkova NA, Gollerbach MM. Key to freshwater algae USSR. Vol. 10(1). Green algae. Class Ulothrichophyceae. [Opredelitel presnovodnih vodoroslei SSSR. Zelenie vodorosli. Class Ulotriksovye.]. Moscow: Soviet Science; 1986. (In Rus.)
[15] Palamar–Mordvintseva G.M. Key to freshwater algae USSR. Vol. 11(2). Green algae. Class Conjugatophyceae. Desmidiaceae (2). [Opredelitel presnovodnih vodoroslei SSSR. Zelenie vodorosli. Klass Konugaty. Poryadok Desmidievie]. Moscow: Soviet Science; 1982. (In Rus.)
[16] Matvienko AM. Key to freshwater algae USSR. Vol. 3. Golden algae. [Opredelitel presnovodnyh vodoroslei SSSR. Zolotistye vodorosli]. Moscow: Soviet Science; 1954. (In Rus.)
[17] Magurran AE. Ecological diversity and its Measurement. [Ekologicheskoe raznoobrazie i ego izmerenie]. Moscow: World; 1998. (in Rus.)
[18] Clarke KR. Comparison of dominance curves. J Exp Mar Biol Ecol 1990; 138: 143–157.
[19] Barinova SS, Medvedeva LA, Anissimova OV. Diversity of algal indicators in environmental assessment [Bioraznoobrazie vodorosley-indikatorov v ozenke kachestva okruzhayuschey sredy]. Tel Aviv: Pilies Studio; 2006. (In Rus.)
[20] Heywood V. Modern approaches to floristics and their impact on the region of SW Asia. Turk J Bot 2004; 28: 7-16.
[21] Ter Braak CJF, Šmilauer P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca: Microcomputer Power Press; 2002.
[22] Ter Braak CJF. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 1987; 69: 69–77.
[23] Ter Braak CJF. Interpreting canonical correlation analysis through biplots of structural correlations and weights. Psychometrica 1990; 55: 519–31.
[24] Novakovsky AB. Abilities and base principles of program module “GRAPHS”. [Vozmozhnosty I bazovye principy programnogo modula “GRAPHS”]. Scientific Reports of Komi Scientific Center, Ural Division of the Russian Academy of Sciences. 2004; 27: 1–28. (In Rus.)
[25] Guseva TV, editor. Hydrochemical indicators of the environment. [Gidrohimicheskie pokazateli sostoyaniya okruzhauschei sredy]. Moscow: Socio-Ecological Union; 2002. (In Rus.)
[26] Hustedt F. Systematische und Ökologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra. Arch Hydrobiol Suppl 1938–1939; 15: 131–177, 393–506, 638–790; 16: 1–15, 274–394.
[27] Hustedt F. Die Diatomeenflora des Flußsystems der Weser im Gebiet der Hansestadt Bremen. Abhandl Naturwis Ver Bremen 1957; 34: 181–440.
[28] Watanabe T, Asai K, Houki A. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage – Diatom Assemblage Index (DAIpo). Sci Tot Envir 1986; 55: 209–18.
[29] Van Dam H, Martens A, Sinkeldam J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J Aquatic Ecol 1994; 28(1): 117–33.
[30] Barinova S, Sivaci R. Experimental approach to a lake ecosystem assessment in the Great Lota, Turkey. The Experiment 2013; 9(4): 566–86.
[31] Barinova S., Keshri JP, Ghosh S, Sikdar J. The influence of the monsoon climate on phytoplankton in the Shibpukur pool of Shiva temple in Burdwan, West Bengal, India. Limnol Rev 2012; 2(2): 47–63.
[32] Salmaso N, Buzzi F, Garibaldi L, Morabito G, Simona M. Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquat Sci 2012; 74: 555–70. DOI 10.1007/s00027-012-0248-5
[33] Kuczyńska-Kippen N. Macrophyte biometric features as an indicator of the trophic status of small water bodies. Oceanol Hydrobiol Stud 2015; 44(1): 38–50. DOI: 10.1515/ohs-2015-0005
[34] Heine S, Sitnik KM., Editors. Macrophytes indicators of environmental changes. [Makrofity indikatory izmenenii prirodnoi sredy]. Kiev: Naukova Dumka; 1993. (In Rus.)
[35] Marvan P, Maršálek B, Heteša J, Sukačova K, Maršálková E, Geriš R, Kozáková M. Comments on the revised tables of algal (and other botanical) water quality indicators listed in CSN 75 7716 – discussion material for assessment of trophic status of water bodies. Association Flos Aquae 2005. www.cyanobacteria.net avail. on 6th May 2005.
[36] Mulderij G, Mau B, de Senerpont Domis LN, Smolders AJP, Van Donk E. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy? Aquat Ecol 2009; 43: 305–12. DOI 10.1007/s10452-008-9194-7
[37] Hongve D, Skogheim OK, Hindar A, Abrahamsen H. Effects of Heavy metals in bombination with NTA, humic acid, and suspended sediment on natural phytoplankton photosynthesis. Bull Envir Contam Toxicol 1980; 25: 594–600.
[38] Kapkov VE. Algae as biomarkers of heavy metal pollution in marine coastal ecosystems. [Vodorosli kak biomarkery zagryazneniya tyajelymi metallami morskih pribrejnyh ekosistem]. [dissertation]. Moscow: Moscow State University; 2003. (In Rus.)
[39] Krupa EG, Romanova SM, Imentay AK. Hydrochemical and toxicological characteristics of the lakes of the National Park "Kөlsay kөlderі" (Kungei Alatau, South-Eastern Kazakhstan) [Gidrohimicheskaya i toksikologicheskaya harakteristika ozer Gosudarstvennogo nazionalnogo prirodnogo parka «Kөlsái Kөlderі́» (Kyngei Alatay, Ugo-Vostochnii Kazahstan)]. Nature Conservation Research. Zapovednaya Nauka 2016; 1(1): 2–10. (In Rus.)
[40] Pistocchi R., Mormile AM, Guerrini F, Isani G, Boni L. Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. J Appl Phycol 2000; 12: 469–77.
[41] Rushforth SR., Brotherson JD, Fungladda N, Evenson WE. The effects of dissolved heavy metals on attached diatoms in the Uintah Basin of Utah, U.S.A. Hydrobiol 1981; 83: 313–23. 0018-8158/81/0832-0313/$02 .20
[42] Serra A, Guasch H, Admiraal W, Van der Geest HG, Van Beusekom SAM. Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicol 2010; 19: 770–80. DOI 10.1007/s10646-009-0454-7
[43] Sharov AN. Phytoplankton as an indicator in estimating long-term changes in the water quality of large lakes. Wat Resources 2008; 35(6): 668–73.
[44] Barinova S, Klymiuk V, Lyalyuk N. Ecology of phytoplankton in the regional landscape park "Slavyansky Resort", Ukraine. Appl Ecol Envir Res 2015; 13(2): 449–64. DOI: 10.15666/aeer/1302_449464
[45] Barinova S, Chekryzheva T. Phytoplankton dynamic and bioindication in the Kondopoga Bay, Lake Onego (Northern Russia). J Limnol 2014; 73(2): 282–97. DOI: 10.4081/jlimnol.2014.820
[46] Klymiuk V, Barinova S. Phytoplankton cell size in saline lakes. Res J Pharm Biol Chem Sci 2016; 7(1): 1077–85.
[47] Krupa EG, Barinova SS. Environmental Variables Regulating the Phytoplankton Structure in High Mountain Lakes. Res J Pharm Biol Chem Sci 2016; 7(4): 1251–61.
[48] Krupa EG. Zooplankton of limnetic and lothic ecosystems of Kazakhstan. Structure, patterns of formation. [Zooplankton limnicheskih i loticheskih ekosistem Kazahstana. Struktura, zakonomernosti formirovaniya]. Saarbrucken: Palmarium Academic Publishing; 2012. (In Rus.)
[49] Rabsch U, Elbrachter M. Cadmium and zinc uptake, growth, and primary production in Coscinodiscus granii cultures containing low levels of cells and dissolved organic carbon. Helgolaender Meereuntersuchungen. Helgolaender Meeresunters 1980; 33: 79-88.
Published
2017-03-13
How to Cite
Barinova, S., & Krupa, E. (2017). Critical environmental factors for photosynthetic organisms of the Shardara Reservoir, Kazakhstan. Bulletin of Advanced Scientific Research, 2(5), 17-27. Retrieved from http://asdpub.com/index.php/basr/article/view/341
Section
Original Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.