Estimation of Semi-Empirical Mas Estimation of Semi-Empirical Mass Formula Coefficients

Estimation of Semi-Empirical Mass Formula Coefficients

  • Mohammad Bagher Askari Department of Physics, Payame Noor University, PO Box 19395-3697 Tehran
Keywords: liquid drop model, semi empirical mass formula, least square method, data fitting, experimental data

Abstract

Using linear least squares method and by data of atomic mass, the present study calculates the coefficients of volume, surface, Coulomb, and asymmetry terms in semi-empirical formula. Our findings show that the mass of neutron and hydrogen can be estimated via developing this example. The results of the present calculations are also compared with those of similar previous studies.

Downloads

Download data is not yet available.

References

[1] Bailey, D. "Semi-empirical Nuclear Mass Formula". PHY357: Strings & Binding Energy. University of Toronto. Retrieved 2011-03-31.
[2] Weizsäcker, CF V. "Zur theorie der kernmassen." Zeitschrift für Physik A Hadrons and Nuclei 96.7 (1935): 431-458.
[3] Smagulov, Samat, and Vadim Logachev. "Nuclear Tests in the USSR: The Red Book (From Nuclear History: Fear, Horror and Nuclear Blackmail) Anatoliy Matushchenko Co-Chairman of the Interagency Expert Commission under the Scientific Research Institute for Pulse Engineering, and Advisor to." Energy, Society and Security (2008): 405.
[4]: Wyler, John Archibald. "Rasputin, science, and the transmogrification of destiny." General Relativity and Gravitation 5.2 (1974): 175-182.
[5] Bethe, Hans Albrecht, and Robert Fox Bacher. "Nuclear physics A. Stationary states of nuclei." Reviews of Modern Physics 8.2 (1936): 82.
[6] Bleck-Neuhaus, Jörn. Elementare Teilchen: moderne Physik von den Atomen bis zum Standard-Modell. Springer-Verlag, 2010.
[7] Derrick, Malcolm, et al. "Measurement of total and partial photon proton cross sections at 180 GeV center of mass energy." Zeitschrift für Physik C Particles and Fields 63.3 (1994): 391-408.
[8] Myers, William D. Droplet model of atomic nuclei. Ifi/Plenum, 1977.
[9] Sobiczewski, Adam. "Progress in theoretical understanding of properties of the heaviest nuclei." Physics of particles and nuclei 25.2 (1994): 119-128.
[10] Davidson, N. J., et al. "A semi-empirical determination of the properties of nuclear matter." Nuclear Physics A 570.1 (1994): 61-68.
[11] Charnes, A.; Frome, E. L.; Yu, P. L. (1976). "The Equivalence of Generalized Least Squares and Maximum Likelihood Estimates in the Exponential Family". Journal of the American Statistical Association 71 (353): 169–171.
[12] Stigler, Stephen M. The history of statistics: The measurement of uncertainty before 1900. Harvard University Press, 1986.
[13] Legendre, Adrien Marie. Nouvelles méthodes pour la détermination des orbites des comètes. No. 1. F. Didot, 1805.
[14] Martin, James E. Physics for radiation protection. John Wiley & Sons, 2013.
[15] Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty Before 1900. Cambridge, MA: Belknap Press of Harvard University Press. ISBN 0-674-40340-1.
[16] Legendre, Adrien-Marie (1805), Nouvelles méthodes pour la détermination des orbites des comètes [New Methods for the Determination of the Orbits of Comets] (in French), Paris: F. Didot
Published
2016-03-13
How to Cite
Askari, M. (2016). Estimation of Semi-Empirical Mas Estimation of Semi-Empirical Mass Formula Coefficients. Bulletin of Advanced Scientific Research, 2(1), 01-04. Retrieved from http://asdpub.com/index.php/basr/article/view/326
Section
Original Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.