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1. Introduction 
The concept of submaximality of general topological spaces 

was introduced by Hewitt [13] in 1943. He discovered a general way 

of constructing maximal topologies. In [3], Alas et al. proved that there 

can be no dense maximal subspace in a product of first countable 

spaces, while under Booth's Lemma there exists a dense submaximal 

subspace in [0,1]c. The first systematic study of submaximal spaces 

was undertaken in the paper of Arhangel'ski¸³ and Collins [4]. In this 

paper, several characterizations and further properties of regular ℋ-

submaximal in hereditary generalized topological spaces are obtained.  

The class of submaximal spaces (as well as the name for it) 

was introduced by Bourbaki [7]. One of the reasons to consider 

submaximal spaces is provided by the theory of maximal spaces. A 

space X is called maximal if it is dense-in-itself and no larger topology 

on the set X is dense-in-itself. It was shown [17, 18], that a space is 

maximal if and only if it is an extremally disconnected submaximal 

space without isolated points. Secondly, any connected Hausdorff 

space which does not admit a larger connected topology is 

submaximal [12]. Third, submaximal spaces were characterized by 

Bourbaki as spaces that do not admit a larger topology with the same 

semi-regularisation [7, p. 1391]. Fourth, nonempty maximal spaces 

are not decomposable into two nonempty dense complementary 

subspaces just because they are submaximal-obviously, dense open 

subsets cannot be disjoint! 

 

2. Preliminaries 
Definition 1.2.1 [9] 

 Let X be a nonempty set and let expX be the power of X. The 

collection µ of subset of X satisfying the following conditions is called 

generalized topology,  

(a) ∅ ∈ µ;  

(b) Gi ∈ µ for i ∈ I implies G = 
Ii

 Gi ∈ µ.  

The elements of µ are called µ-open and their compliments are 

called µ-closed. The pair (X,µ) is called a generalized topological 

spaces (GTS).  

Definition 1.2.2 [9] 

 Let (X, ) be a generalized topological space. Let A be any 

subset of X. Then the interior of A is defined as the union of all -open 

sets contained in A and it is denoted by 𝑖μ(A). That is,  

𝑖μ(A) = ⋃ { A ⊂ X : U ⊂ A and U   }. 

If A is open, then A = 𝑖μ(A). 

 

Definition 1.2.3 [9] 

 Let (X, ) be a generalized topological space. Let A be any 

subset of X. Then the closure of A is defined as the intersection of all 

closed sets containing A and it is denoted by cl(A) or A . That is,  

𝑐μ(A) = ⋂ { A ⊂ X : U ⊂ A, UC   }. 

If A is closed, then A = 𝑐μ(A).   

Definition 1.2.4 [9] 

 Let X be a nonempty set. A hereditary class ℋ of X if A  ℋ 

and B  A then B  ℋ. A generalized topological spaces (X, ) with a 

hereditary class ℋ is Hereditary Generalized Topological Spaces 

(HGTS) and denoted by (X, , ℋ).  

 For each A ⊂ X, A*(ℋ, ) = { x  X : A ⋂ G  ℋ for every Gi  

 such that x  G }. If there is no ambiguity then we write A* in place 

of A*(ℋ, ). For each A ⊂ X, then cμ
∗ A  = A ∪ A∗. 

Definition 1.2.5 [15] 

 Any subset A of a topological spaces (X, μ) is said to be 

dense in X if cl A = X. 

Definition 1.2.6 [16] 

Any topological space (X, μ) is said to be a submaximal 

space if every dense subset of X is open. 

Definition 1.2.7 [22] 

Any topological space (X,  μ) is said to be a regular 

submaximal space if every dense set in (X, μ) is regular open. 

Definition 1.2.8 [6]  

A topological space (X, μ) is said to be a g-submaximal space 

if every dense set is g-open. 

Definition 1.2.9 [8] 

Let X and Y be topological spaces. A function f : X → Y is 

called a closed map is f(F) is closed in Y whenever F is closed in X. 

Definition 1.2.10 [8] 

Let X and Y be topological spaces. A function f : X → Y is 

called a open map is f(F) is open in Y whenever F is open in X. 

 

3. Hereditary generalized regular submaximal space 
Definition 2.1 

 Let (X, μ, ℋ) be a hereditary generalized topological space. 

Any subset A of X is said to be regular-ℋ-open if A = 𝑖μ(cμ
∗ A ). The 

complement of a regular-ℋ-open set is said to be a regular-ℋ-closed.  

Example 2.1 

 Let X = { a, b, c, d, e }, μ = { ϕ, { a }, { c }, { a, c }, { a, b, c }, { c, 

d }, { a, c, d }, { a, b, c, d } } and ℋ = { ϕ, { a }, { b }, { c } }. Clearly, μ is a 

generalized topology and ℋ  is a hereditary class and the triple 

(X, μ, ℋ) is a hereditary generalized topological space. Let A = { a, b, c, 

d } be a subset of X. Then, A∗ = { a, b, c, d } and so cμ
∗ A = A ∪ A∗ = { a, 
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b, c, d }. Then,  𝑖μ(cμ
∗(A)) = { a, b, c, d }. Hence, A =  𝑖μ(cμ

∗(A)). Therefore, 

A is regular-ℋ-open. 

Definition 2.2 

 Let (X, μ, ℋ) be a hereditary generalized topological space 

and A be any subset of X. Then the regular ℋ-interior of A (briefly, 

𝑅ℋint(A)) is defined by 

Rℋint(A) = ∪ { G ; G ⊆ A and each G ⊆ X is a regular ℋ-open set }. 

Definition 2.3  

 Let (X, μ, ℋ) be a hereditary generalized topological space 

and A be any subset of X. Then the regular ℋ-closure of A (briefly, 

𝑅ℋcl(A)) is defined by 

Rℋcl(A) = ∩ { K ; A ⊆ K and each K ⊆ X is a regular ℋ-closed set }. 

Definition 2.4 

 Let (X, μ, ℋ) be a hereditary generalized topological space. 

Any subset A of X is said to be dense-ℋ-set if cμ
∗ A = X. 

Definition 2.5 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

Any subset A of X is said to be codense-ℋ-set if X\A is dense-ℋ-set. 

Example 2.2 

Let X = { a, b, c }, μ = { ϕ, X, { a }, { a, b }, { b, c } } and 

ℋ = { ϕ, { a } }. Clearly, μ is a generalized topology, ℋ is a hereditary 

class and the triple (X, μ, ℋ) is a hereditary generalized topological 

space. Let A = { b, c } be a subset of X. Then A∗ = { a, b, c }. Hence cμ
∗ A  

= X. Therefore, A is dense ℋ set. Hence X\A = { a } is codense-ℋ-set. 

Definition 2.6 

Any hereditary generalized topological space (X, μ, ℋ) is 

said to be a hereditary generalized submaximal space if every dense-

ℋ-set (resp. codense-ℋ-set) in (X, μ, ℋ) is μ-open (resp. μ-closed). 

Example 2.3 

Let X = { a, b, c }, μ = { ϕ, { c }, { a, c }, { b, c }, X } and 

ℋ = { ϕ, { a }, { b }, { a, b } }. Clearly, μ is a generalized topology, ℋ is a 

hereditary class and the triple (X, μ, ℋ) is a hereditary generalized 

topological space. Then dense-ℋ-sets are { c }, { a, c }, { b, c } and X. 

Clearly all dense-ℋ-sets are μ-open sets. Hence (X, 𝜇, ℋ) is said to be 

hereditary generalized submaximal space. 

Definition 2.7 

Any hereditary generalized topological space (X, μ, ℋ) is 

said to be a hereditary generalized regular submaximal space if every 

dense-ℋ-set in (X, μ, ℋ) is regular-ℋ-open. 

Example 2.4 

Let X = { a, b, c }, μ = { ϕ, { c }, { a, c }, { b, c }, X } and 

ℋ = { ϕ, { a }, { b }, { c }, { a, b }, { a, c }, { b, c } }. Clearly, μ is a 

generalized topology, ℋ is a hereditary class and the triple (X, μ, ℋ) is 

a hereditary generalized topological space. Then dense-ℋ-set is X. 

Clearly X is μ-open set. Hence    (X, 𝜇, ℋ) is said to be hereditary 

generalized regular submaximal space. 

Theorem 2.1 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

For any subset A of X, the following statements are equivalent: 

(a) X is hereditary generalized regular submaximal,  

(b) Every codense-ℋ-subset A of X is regular-ℋ-closed. 

Proof: 

(a) ⇒ (b)  

Let A be a codense-ℋ-subset of X. Since X\A is dense-ℋ-set, 

by (a), X\A is regular-ℋ-open. Thus, A is regular-ℋ-closed.  

(b) ⇒ (a) 

Let A be a dense-ℋ-subset of X. Since X\A is codense-ℋ-set, 

X\A is regular-ℋ-closed. Thus A is regular-ℋ-open. 

Proposition 2.1 

Every hereditary generalized regular submaximal space is a 

hereditary generalized submaximal space. 

Proof:  

Let (X, μ , ℋ ) be a hereditary generalized regular 

submaximal space and A ⊆ X be a dense-ℋ-set. Since (X, μ, ℋ) is 

hereditary generalized regular submaximal, A is regular-ℋ-open in                    

(X, μ, ℋ). Since every regular-ℋ-open is μ-open, A is μ-open. Hence (X, 

μ, ℋ) is a hereditary generalized submaximal space as every dense-ℋ-

set is a     μ-open set in (X, μ, ℋ).  

Definition 2.8       

Let (X, μ, ℋ) be a hereditary generalized topological space. Any subset 

A of X is said to be  

g-ℋ-open if cμ
∗ A  ⊆ U whenever A ⊆ U and U is μ-closed. 

Note 2.1 

Every regular-ℋ-open is g-ℋ-open. 

Proposition 2.2 

Every hereditary generalized regular submaximal space is 

hereditary generalized   g-submaximal space. 

Proof:  

Let A ⊆ X be dense-ℋ-set in a hereditary generalized 

regular submaximal space (X, μ, ℋ). Since every dense-ℋ-set of X is a 

regular-ℋ-open, A is regular-ℋ-open in (X, μ, ℋ). Since every regular-

ℋ -open is g-ℋ -open, A is g-ℋ -open. Hence every hereditary 

generalized regular submaximal space is hereditary generalized g-

submaximal space.  

Definition 2.9 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

Any subset A of X is said to be pre regular-ℋ-open if A ⊆ Rℋint(cμ
∗ A ). 

Proposition 2.3 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

For any subset A of X, the following statements are equivalent: 

(a) A is pre regular-ℋ-open  

(b) A = U ∩ D where U is regular-ℋ-open and D is 

dense-ℋ-set in X. 

Proof:  

(a) ⇒ (b) 

If A is pre regular ℋ-open, then A ⊆ Rℋint(cμ
∗ (A)). Let U = 

Rℋint(cμ
∗(A)), then U is a regular ℋ-open set. Let D = X − (U − A)  = (X − 

U) ∪ A.  

Since Rℋint(cμ
∗(A)) ⊆ cμ

∗ A  and so −Rℋint(cμ
∗(A)) ⊇ − cμ

∗ A .  

Hence X − Rℋint(cμ
∗(A)) ⊇ X − cμ

∗ A  from which X – U  ⊇ X − cμ
∗(A).  

 Also, X = cμ
∗ A  ∪ (X − cμ

∗(A))  

 ⊆ cμ
∗(A) ∪ (X − U)  

 ⊆ cμ
∗ A  ∪ cμ

∗(X − U) 

 ⊆ cμ
∗[A ∪ (X − U)] ⊆ cμ

∗(D).  

Thus X ⊆ cμ
∗ D . Further cμ

∗ D ⊆ X. Therefore X = cμ
∗ D . 

Hence D is dense-ℋ-set. Therefore A = U ∩ D.  

(b) ⇒ (a) 

If A = U ∩ D, where U ∈ regular ℋ-open and D is dense ℋ-

set, then A ⊆ U, Rℋint(cμ
∗(A)) ⊆ Rℋint(cμ

∗(U)). Since U = U ∩ X = U ∩ 

cμ
∗(D) ⊆  cμ

∗(U ∩D) = cμ
∗(A). Hence U ⊆ cμ

∗(A). Then Rℋint(cμ
∗(U)) ⊆ 

Rℋint(cμ
∗(A)). Therefore, Rℋint(cμ

∗(U)) = Rℋint(cμ
∗(A)). So that A is pre 

regular ℋ-open.  

Proposition 2.4 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

Then the following statements are equivalent: 

(a) (X, μ, ℋ) is a hereditary generalized regular submaximal space. 

(b) Every pre regular-ℋ-open set is regular-ℋ-open.                

Proof:  

(a) ⇒ (b)  

  Suppose that (X, μ, ℋ) is hereditary generalized regular 

submaximal and A ⊆ X be pre regular-ℋ-open. By Proposition 2.3, A = 

U ∩ D, where U is regular ℋ-open, D is a dense-ℋ-set. Since (X, μ, ℋ) 

is hereditary generalized regular submaximal, D is regular-ℋ-open. 

Since intersection of two regular-ℋ-open sets is a regular-ℋ-open set, 

A is a regular-ℋ-open set. 

(b) ⇒ (a)  

Let A be any pre regular ℋ-open. By hypothesis A is 

regular-ℋ-open. By Proposition 2.3,    A = U ∩ D, where U is regular 

ℋ-open, D is a dense-ℋ-set in (X, μ, ℋ). Since A and U are regular ℋ-

open, D must be regular ℋ-open in (X, μ, ℋ). Thus every dense-ℋ-set 

is a regular-ℋ-open set in (X, μ, ℋ). Hence (X, μ, ℋ) is a hereditary 

generalized regular submaximal space.  

Theorem 2.2 

For a hereditary generalized topological space (X, μ, ℋ), the 

following properties are equivalent:  
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(a) (X, μ, ℋ) is a hereditary generalized regular submaximal 

space.  

(b) For all A ⊆ X, if A\Rℋint(A) ≠ 𝜙, then A\Rℋint(cμ
⋆(A)) ≠ 𝜙. 

Proof:     

 (a) ⇒ (b) 

Let A ⊆ X and A\Rℋint(A) ≠ 𝜙. Suppose that A\Rℋint(cμ
⋆(A)) = 

𝜙. Then A ⊆ Rℋint(cμ
⋆(A)). This implies that A is pre regular ℋ-open. 

Since (X, μ, ℋ) is a hereditary generalized regular submaximal space, 

by Proposition 2.4, A is regular ℋ-open. Thus, A\Rℋint(A) = A\A = 𝜙. 

This is a contradiction. Hence A\Rℋint(cμ
⋆(A)) ≠ 𝜙. 

(b)  ⇒ (a) 

As by Proposition 2.4, it is sufficient to show that every pre 

regular-ℋ-open set is regular-ℋ-open. Let A be pre regular-ℋ-open. 

Then A ⊆ Rℋint(cμ
⋆(A)). As a contrary, suppose that A is not regular-

ℋ-open. Then A ⊈ Rℋint(A) and hence A\Rℋint (A) ≠ 𝜙. By (b), 

A\Rℋint(cμ
⋆(A)) ≠ 𝜙. Thus, A ⊈ Rℋint(cμ

⋆(A)). This is a contradiction. 

Thus A is regular ℋ open. Therefore by Proposition 2.4, (X, μ, ℋ) is 

hereditary generalized regular submaximal space. 

Proposition 2.5 

Let (X, μ, ℋ) be a hereditary generalized topological space. 

Then the following statements are equivalent: 

(a) (X, μ, ℋ) is a hereditary generalized regular submaximal space. 

(b) cμ
∗(A) − A is regular-ℋ-closed for every A ⊂ X. 

Proof: 

(a) ⇒ (b)  

Let (X,  μ ,  ℋ ) be a hereditary generalized regular 

submaximal space and A ⊂ X. Consider   (X − (cμ
∗(A) − A)) = (X − 

cμ
∗(A)) ⋃ A. Then    cμ

∗(X − (cμ
∗(A) − A))) = cμ

∗((X − cμ
∗(A))∪A) ⊃ (X − 

cμ
∗(A)) ⋃ cμ

∗(A) = X. Thus   cμ
∗(X − (cμ

∗(A) −A))) = X. Hence X − (cμ
∗(A) − 

A) is a dense-ℋ-set. Since  (X, μ, ℋ) is a hereditary generalized regular 

submaximal space, X – (cμ
∗(A) – A) is regular ℋ-open. Therefore cμ

∗(A) – 

A is regular-ℋ-closed for every A ⊆ X. 

(b) ⇒ (a)  

Assume that cμ
∗(A) – A is regular ℋ-closed for every A ⊆ X. 

Let A be a dense-ℋ-set in   (X, μ, ℋ). Then cμ
∗ A  = X. Since cμ

∗(A) − A is 

regular-ℋ-closed for every A ⊆ X, X − A is regular-ℋ-closed which 

implies that A is a regular-ℋ-open set for every A ⊆ X. Hence (X, μ, ℋ) 

is a hereditary generalized regular submaximal space. 

 

Theorem 2.3 

Let (X, μ
1

, ℋ1) and (Y, μ
2

, ℋ2 ) be any two hereditary 

generalized topological spaces. Let      f : (X, μ
1
, ℋ1) → (Y, μ

2
, ℋ2) be a 

μ-open surjective function. If (X, μ
1
, ℋ1) is hereditary generalized 

regular submaximal, then (Y, μ
2

, ℋ2 ) is hereditary generalized 

submaximal.  

Proof: 

Let A ⊆ Y be a dense-ℋ-set. Since f is surjective, f −1(A) is 

dense-ℋ-set in (X, μ
1
, ℋ1). Since (X, μ

1
, ℋ1) is a hereditary generalized 

regular submaximal space, f−1(A) is regular-ℋ-open in (X, μ
1
, ℋ1). 

Since every regular ℋ-open set is 𝜇-open, f−1(A) is μ
1
-open in (X, μ

1
, 

ℋ1). Since f is a μ-open surjective function, f(f −1(A)) = A is μ
2
-open in 

(Y, μ
2
, ℋ2). Thus every dense-ℋ-set is μ

2
-open in (Y, μ

2
, ℋ2). Hence, 

(Y, μ
2
, ℋ2) is hereditary generalized submaximal.  
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