Original Article

A study on hereditary generalized regular submaximal spaces

B. Amudhambigai¹, V. Madhuri^{*2} and M. Rowthri²

¹Assistant Professor of Mathematics, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India ²Research Scholar, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India

*Corresponding Author

V. Madhuri Research Scholar, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India E-mail: <u>madhurivaradarajan@gmail.com</u>

Abstract

In this paper the concepts of dense-H-sets, codense-H-sets, hereditary generalized submaximal spaces and hereditary generalized regular submaximal spaces are introduced with necessary examples. Also interesting properties and some equivalent statements of hereditary generalized regular submaximal spaces are discussed.

 $Keywords: {\tt Dense-} \mathcal{H} \text{-sets}, {\tt Hereditary generalized submaximal space}, {\tt g-} \mathcal{H} \text{-open}, {\tt Pre regular-} \mathcal{H} \text{-open set}, {\tt Regular-} \mathcal{H} \text{-closed}$

2010 AMS Subject Classification Primary: 54A05, 54A10, 54A20

1. Introduction

The concept of submaximality of general topological spaces was introduced by Hewitt [13] in 1943. He discovered a general way of constructing maximal topologies. In [3], Alas et al. proved that there can be no dense maximal subspace in a product of first countable spaces, while under Booth's Lemma there exists a dense submaximal subspace in $[0,1]^c$. The first systematic study of submaximal spaces was undertaken in the paper of Arhangel'ski,³ and Collins [4]. In this paper, several characterizations and further properties of regular \mathcal{H} -submaximal in hereditary generalized topological spaces are obtained.

The class of submaximal spaces (as well as the name for it) was introduced by Bourbaki [7]. One of the reasons to consider submaximal spaces is provided by the theory of maximal spaces. A space X is called maximal if it is dense-in-itself and no larger topology on the set X is dense-in-itself. It was shown [17, 18], that a space is maximal if and only if it is an extremally disconnected submaximal space without isolated points. Secondly, any connected Hausdorff space which does not admit a larger connected topology is submaximal [12]. Third, submaximal spaces were characterized by Bourbaki as spaces that do not admit a larger topology with the same semi-regularisation [7, p. 1391]. Fourth, nonempty maximal spaces are not decomposable into two nonempty dense complementary subspaces just because they are submaximal-obviously, dense open subsets cannot be disjoint!

2. Preliminaries

Definition 1.2.1 [9]

Let X be a nonempty set and let expX be the power of X. The collection μ of subset of X satisfying the following conditions is called generalized topology,

(a) $\emptyset \in \mu$;

(b)
$$G_i \in \mu$$
 for $i \in I$ implies $G = \bigcup_{i \in I} G_i \in \mu$.

The elements of μ are called $\mu\text{-open}$ and their compliments are called $\mu\text{-closed}.$ The pair (X, μ) is called a generalized topological spaces (GTS).

Definition 1.2.2 [9]

Let (X, μ) be a generalized topological space. Let A be any subset of X. Then the interior of A is defined as the union of all μ -open sets contained in A and it is denoted by $i_{\mu}(A)$. That is,

 $i_{\mu}(A) = \bigcup \{ A \subset X : U \subset A \text{ and } U \in \mu \}.$ If A is open, then $A = i_{\mu}(A)$. Definition 1.2.3 [9]

Let (X, μ) be a generalized topological space. Let A be any subset of X. Then the closure of A is defined as the intersection of all closed sets containing A and it is denoted by cl(A) or \overline{A} . That is,

 $c_{\mu}(A) = \bigcap \{ A \subset X : U \subset A, U^{C} \in \mu \}.$

If A is closed, then $A = c_{\mu}(A)$.

Definition 1.2.4 [9]

Let X be a nonempty set. A hereditary class \mathcal{H} of X if $A \in \mathcal{H}$ and $B \subset A$ then $B \in \mathcal{H}$. A generalized topological spaces (X, μ) with a hereditary class \mathcal{H} is Hereditary Generalized Topological Spaces (HGTS) and denoted by (X, μ, \mathcal{H}) .

For each $A \subset X$, $A^*(\mathcal{H}, \mu) = \{ x \in X : A \cap G \notin \mathcal{H} \text{ for every } G_i \in \mu \text{ such that } x \in G \}$. If there is no ambiguity then we write A^* in place of $A^*(\mathcal{H}, \mu)$. For each $A \subset X$, then $c^*_{\mu}(A) = A \cup A^*$.

Definition 1.2.5 [15]

Any subset A of a topological spaces (X, $\mu)$ is said to be dense in X if cl(A)=X.

Definition 1.2.6 [16]

Any topological space (X,μ) is said to be a submaximal space if every dense subset of X is open.

Definition 1.2.7 [22]

Any topological space (X, μ) is said to be a regular submaximal space if every dense set in (X, μ) is regular open.

Definition 1.2.8 [6]

A topological space (X, $\boldsymbol{\mu})$ is said to be a g-submaximal space if every dense set is g-open.

Definition 1.2.9 [8]

Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is called a closed map is f(F) is closed in Y whenever F is closed in X. **Definition 1.2.10 [8]**

Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is called a open map is f(F) is open in Y whenever F is open in X.

3. Hereditary generalized regular submaximal space Definition 2.1

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be regular- \mathcal{H} -open if A = $i_{\mu}(c_{\mu}^{*}(A))$. The complement of a regular- \mathcal{H} -open set is said to be a regular- \mathcal{H} -closed. **Example 2.1**

Let X = { a, b, c, d, e }, $\mu = \{ \varphi, \{ a \}, \{ c \}, \{ a, c \}, \{ a, b, c \}, \{ c, d \}, \{ a, c, d \}, \{ a, b, c, d \} \}$ and $\mathcal{H} = \{ \varphi, \{ a \}, \{ b \}, \{ c \} \}$. Clearly, μ is a generalized topology and \mathcal{H} is a hereditary class and the triple (X, μ, \mathcal{H}) is a hereditary generalized topological space. Let A = { a, b, c, d } be a subset of X. Then, A^{*} = { a, b, c, d } and so $c^{\mu}_{\mu}(A) = A \cup A^* = \{ a, b, c, d \}$

b, c, d }. Then, $i_{\mu}(c_{\mu}^{*}(A)) = \{a, b, c, d\}$. Hence, $A = i_{\mu}(c_{\mu}^{*}(A))$. Therefore, A is regular- \mathcal{H} -open.

Definition 2.2

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A be any subset of X. Then the regular \mathcal{H} -interior of A (briefly, $R_{\mathcal{H}}$ int(A)) is defined by

 $R_{\mathcal{H}}$ int(A) = \cup { G ; G \subseteq A and each G \subseteq X is a regular \mathcal{H} -open set }. **Definition 2.3**

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A be any subset of X. Then the regular \mathcal{H} -closure of A (briefly, $R_{\mathcal{H}}$ cl(A)) is defined by

 $R_{\mathcal{H}}cl(A) = \cap \{ K ; A \subseteq K \text{ and each } K \subseteq X \text{ is a regular } \mathcal{H}\text{-closed set } \}.$ **Definition 2.4**

Let (X, $\mu, \mathcal{H})$ be a hereditary generalized topological space. Any subset A of X is said to be dense- \mathcal{H} -set if $c_{\mu}^{*}(A) = X$.

Definition 2.5

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be codense- \mathcal{H} -set if X\A is dense- \mathcal{H} -set. Example 2.2

Let $X = \{ a, b, c \}, \mu = \{ \phi, X, \{ a \}, \{ a, b \}, \{ b, c \} \}$ and $\mathcal{H} = \{ \phi, \{ a \} \}$. Clearly, μ is a generalized topology, \mathcal{H} is a hereditary class and the triple (X, $\mu, \mathcal{H})$ is a hereditary generalized topological space. Let A = { b, c } be a subset of X. Then $A^* = \{a, b, c\}$. Hence $c^*_{\mu}(A)$ = X. Therefore, A is dense \mathcal{H} set. Hence X\A = { a } is codense- \mathcal{H} -set.

Definition 2.6

Any hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a hereditary generalized submaximal space if every dense- \mathcal{H} -set (resp. codense- \mathcal{H} -set) in (X, μ , \mathcal{H}) is μ -open (resp. μ -closed). Example 2.3

Let $X = \{ a, b, c \}, \mu = \{ \phi, \{ c \}, \{ a, c \}, \{ b, c \}, X \}$ and $\mathcal{H} = \{ \varphi, \{ a \}, \{ b \}, \{ a, b \} \}$. Clearly, μ is a generalized topology, \mathcal{H} is a hereditary class and the triple (X, μ, \mathcal{H}) is a hereditary generalized topological space. Then dense- \mathcal{H} -sets are { c }, { a, c }, { b, c } and X. Clearly all dense- \mathcal{H} -sets are μ -open sets. Hence (X, μ , \mathcal{H}) is said to be hereditary generalized submaximal space.

Definition 2.7

Any hereditary generalized topological space (X, $\mu, \mathcal{H})$ is said to be a hereditary generalized regular submaximal space if every dense- \mathcal{H} -set in (X, μ , \mathcal{H}) is regular- \mathcal{H} -open.

Example 2.4

Let $X = \{a, b, c\}, \mu = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\mathcal{H} = \{ \varphi, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ a, c \}, \{ b, c \} \}.$ Clearly, μ is a generalized topology, ${\mathcal H}$ is a hereditary class and the triple (X, $\mu, {\mathcal H})$ is a hereditary generalized topological space. Then dense- $\ensuremath{\mathcal{H}}\xspace$ space is X. Clearly X is µ-open set. Hence (X, μ, \mathcal{H}) is said to be hereditary generalized regular submaximal space.

Theorem 2.1

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. For any subset A of X, the following statements are equivalent:

(a) X is hereditary generalized regular submaximal,

(b) Every codense- \mathcal{H} -subset A of X is regular- \mathcal{H} -closed.

Proof:

(a) 🤋 (b)

Let A be a codense- \mathcal{H} -subset of X. Since X\A is dense- \mathcal{H} -set, by (a), $X \setminus A$ is regular- \mathcal{H} -open. Thus, A is regular- \mathcal{H} -closed.

(b) 2 (a)

Let A be a dense- \mathcal{H} -subset of X. Since X\A is codense- \mathcal{H} -set, X\A is regular- \mathcal{H} -closed. Thus A is regular- \mathcal{H} -open.

Proposition 2.1

Every hereditary generalized regular submaximal space is a hereditary generalized submaximal space.

Proof:

Let (X, μ, \mathcal{H}) be a hereditary generalized regular submaximal space and $A \subseteq X$ be a dense- \mathcal{H} -set. Since (X, μ, \mathcal{H}) is hereditary generalized regular submaximal, A is regular- \mathcal{H} -open in (X, μ, \mathcal{H}) . Since every regular- \mathcal{H} -open is μ -open, A is μ -open. Hence (X, μ, \mathcal{H}) μ , \mathcal{H}) is a hereditary generalized submaximal space as every dense- \mathcal{H} set is a μ -open set in (X, μ , \mathcal{H}).

Definition 2.8

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be

g- \mathcal{H} -open if c^{*}_u(A) ⊆ U whenever A ⊆ U and U is µ-closed.

Note 2.1

Every regular- \mathcal{H} -open is g- \mathcal{H} -open.

Proposition 2.2

Every hereditary generalized regular submaximal space is hereditary generalized *g*-submaximal space.

Proof:

Let $A \subseteq X$ be dense- \mathcal{H} -set in a hereditary generalized regular submaximal space (X, μ , H). Since every dense-H-set of X is a regular- \mathcal{H} -open, A is regular- \mathcal{H} -open in (X, μ , \mathcal{H}). Since every regular- \mathcal{H} -open is g- \mathcal{H} -open, A is g- \mathcal{H} -open. Hence every hereditary generalized regular submaximal space is hereditary generalized gsubmaximal space.

Definition 2.9

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be pre regular- \mathcal{H} -open if A \subseteq R_{\mathcal{H}}int(c_u^{*}(A)). **Proposition 2.3**

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. For any subset A of X, the following statements are equivalent:

- (a) A is pre regular- \mathcal{H} -open
- (b) $A = U \cap D$ where U is regular- \mathcal{H} -open and D is dense-*H*-set in X.

Proof:
(a)
$$\Rightarrow$$
 (b)

If A is pre regular \mathcal{H} -open, then $A \subseteq R_{\mathcal{H}}$ int($c_{u}^{*}(A)$). Let U = $R_{\mathcal{H}}$ int($c_{\mu}^{*}(A)$), then U is a regular \mathcal{H} -open set. Let D = X - (U - A) = (X - A)U) U A.

Since $R_{\mathcal{H}}$ int $(c_{\mu}^{*}(A)) \subseteq c_{\mu}^{*}(A)$ and so $-R_{\mathcal{H}}$ int $(c_{\mu}^{*}(A)) \supseteq - c_{\mu}^{*}(A)$.

Hence $X - R_{\mathcal{H}}int(c_{\mu}^{*}(A)) \supseteq X - c_{\mu}^{*}(A)$ from which $X - U \supseteq X - c_{\mu}^{*}(A)$.

Also, $X = c_{\mu}^{*}(A) \cup (X - c_{\mu}^{*}(A))$ $\subseteq c_{\mu}^{*}(A) \cup (X - U)$

$$\subseteq c_{\mathfrak{u}}^*(A) \cup c_{\mathfrak{u}}^*(X - U)$$

$$\subseteq c_{\mu}^{*}[A \cup (X - U)] \subseteq c_{\mu}^{*}(D).$$

Thus $X \subseteq c_u^*(D)$. Further $c_u^*(D) \subseteq X$. Therefore $X = c_u^*(D)$. Hence D is dense- \mathcal{H} -set. Therefore A = U \cap D.

(b) ⇒ (a)

If A = U \cap D, where U \in regular \mathcal{H} -open and D is dense \mathcal{H} set, then $A \subseteq U$, $R_{\mathcal{H}}$ int $(c_u^*(A)) \subseteq R_{\mathcal{H}}$ int $(c_u^*(U))$. Since $U = U \cap X = U \cap$ $c^*_\mu(D)\subseteq \ c^*_\mu(U\ \cap D)\ = c^*_\mu(A). \ \text{Hence} \ \ U\subseteq c^*_\mu(A). \ \text{Then}\ R_{\mathcal H}int(c^*_\mu(U))\subseteq$ $R_{\mathcal{H}}$ int($c_{u}^{*}(A)$). Therefore, $R_{\mathcal{H}}$ int($c_{u}^{*}(U)$) = $R_{\mathcal{H}}$ int($c_{u}^{*}(A)$). So that A is pre regular \mathcal{H} -open.

Proposition 2.4

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then the following statements are equivalent:

(a) (X, μ , H) is a hereditary generalized regular submaximal space.

(b) Every pre regular- \mathcal{H} -open set is regular- \mathcal{H} -open.

Proof: (a) ⇒ (b)

Suppose that (X, μ, \mathcal{H}) is hereditary generalized regular submaximal and $A \subseteq X$ be pre regular- \mathcal{H} -open. By Proposition 2.3, A = $U\cap D,$ where U is regular $\mathcal H\text{-open},$ D is a dense- $\mathcal H\text{-set.}$ Since $(X,\mu,\mathcal H)$ is hereditary generalized regular submaximal, D is regular- \mathcal{H} -open. Since intersection of two regular-H-open sets is a regular-H-open set, A is a regular- \mathcal{H} -open set.

(b) ⇒ (a)

Let A be any pre regular $\ensuremath{\mathcal{H}}\xspace$ open. By hypothesis A is regular- \mathcal{H} -open. By Proposition 2.3, $A = U \cap D$, where U is regular \mathcal{H} -open, D is a dense- \mathcal{H} -set in (X, μ , \mathcal{H}). Since A and U are regular \mathcal{H} open, D must be regular \mathcal{H} -open in (X, μ , \mathcal{H}). Thus every dense- \mathcal{H} -set is a regular- \mathcal{H} -open set in (X, μ , \mathcal{H}). Hence (X, μ , \mathcal{H}) is a hereditary generalized regular submaximal space.

Theorem 2.2

For a hereditary generalized topological space (X, μ , H), the following properties are equivalent:

- (a) (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.
- (b) For all $A \subseteq X$, if $A \setminus R_{\mathcal{H}} int(A) \neq \phi$, then $A \setminus R_{\mathcal{H}} int(c_{\mu}^{\star}(A)) \neq \phi$. **Proof:**

(a) 🛛 (b)

Let $A \subseteq X$ and $A \setminus R_{\mathcal{H}}$ int $(A) \neq \phi$. Suppose that $A \setminus R_{\mathcal{H}}$ int $(c^*_{\mu}(A)) = \phi$. Then $A \subseteq R_{\mathcal{H}}$ int $(c^*_{\mu}(A))$. This implies that A is pre regular \mathcal{H} -open. Since (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space, by Proposition 2.4, A is regular \mathcal{H} -open. Thus, $A \setminus R_{\mathcal{H}}$ int $(A) = A \setminus A = \phi$. This is a contradiction. Hence $A \setminus R_{\mathcal{H}}$ int $(c^*_{\mu}(A)) \neq \phi$.

(b) 🛛 (a)

As by Proposition 2.4, it is sufficient to show that every pre regular- \mathcal{H} -open set is regular- \mathcal{H} -open. Let A be pre regular- \mathcal{H} -open. Then $A \subseteq R_{\mathcal{H}} int(c^*_{\mu}(A))$. As a contrary, suppose that A is not regular- \mathcal{H} -open. Then $A \subseteq R_{\mathcal{H}} int(A)$ and hence $A \setminus R_{\mathcal{H}} int (A) \neq \phi$. By (b), $A \setminus R_{\mathcal{H}} int(c^*_{\mu}(A)) \neq \phi$. Thus, $A \nsubseteq R_{\mathcal{H}} int(c^*_{\mu}(A))$. This is a contradiction. Thus A is regular \mathcal{H} open. Therefore by Proposition 2.4, (X, μ, \mathcal{H}) is hereditary generalized regular submaximal space.

Proposition 2.5

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then the following statements are equivalent:

(a) (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.

(b) $c_{ii}^*(A) - A$ is regular- \mathcal{H} -closed for every $A \subset X$.

Proof:

(a) ⇒ (b)

Let (X, μ, \mathcal{H}) be a hereditary generalized regular submaximal space and $A \subset X$. Consider $(X - (c_{\mu}^{*}(A) - A)) = (X - c_{\mu}^{*}(A)) \cup A$. Then $c_{\mu}^{*}(X - (c_{\mu}^{*}(A) - A))) = c_{\mu}^{*}((X - c_{\mu}^{*}(A)) \cup A) \supset (X - c_{\mu}^{*}(A)) \cup c_{\mu}^{*}(A) = X$. Thus $c_{\mu}^{*}(X - (c_{\mu}^{*}(A) - A))) = X$. Hence $X - (c_{\mu}^{*}(A) - A)$ is a dense- \mathcal{H} -set. Since (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space, $X - (c_{\mu}^{*}(A) - A)$ is regular \mathcal{H} -open. Therefore $c_{\mu}^{*}(A) - A$ is regular- \mathcal{H} -closed for every $A \subseteq X$.

(b) ⇒ (a)

Assume that $c_{\mu}^{*}(A) - A$ is regular \mathcal{H} -closed for every $A \subseteq X$. Let A be a dense- \mathcal{H} -set in (X, μ, \mathcal{H}) . Then $c_{\mu}^{*}(A) = X$. Since $c_{\mu}^{*}(A) - A$ is regular- \mathcal{H} -closed for every $A \subseteq X$, X - A is regular- \mathcal{H} -closed which implies that A is a regular- \mathcal{H} -open set for every $A \subseteq X$. Hence (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.

Theorem 2.3

Let $(X, \mu_1, \mathcal{H}_1)$ and $(Y, \mu_2, \mathcal{H}_2)$ be any two hereditary generalized topological spaces. Let $f: (X, \mu_1, \mathcal{H}_1) \rightarrow (Y, \mu_2, \mathcal{H}_2)$ be a μ -open surjective function. If $(X, \mu_1, \mathcal{H}_1)$ is hereditary generalized regular submaximal, then $(Y, \mu_2, \mathcal{H}_2)$ is hereditary generalized submaximal.

Proof:

Let $A \subseteq Y$ be a dense- \mathcal{H} -set. Since f is surjective, $f^{-1}(A)$ is dense- \mathcal{H} -set in $(X, \mu_1, \mathcal{H}_1)$. Since $(X, \mu_1, \mathcal{H}_1)$ is a hereditary generalized regular submaximal space, $f^{-1}(A)$ is regular- \mathcal{H} -open in $(X, \mu_1, \mathcal{H}_1)$. Since every regular \mathcal{H} -open set is μ -open, $f^{-1}(A)$ is μ_1 -open in $(X, \mu_1, \mathcal{H}_1)$. Since f is a μ -open surjective function, $f(f^{-1}(A)) = A$ is μ_2 -open in $(Y, \mu_2, \mathcal{H}_2)$. Thus every dense- \mathcal{H} -set is μ_2 -open in $(Y, \mu_2, \mathcal{H}_2)$. Hence, $(Y, \mu_2, \mathcal{H}_2)$ is hereditary generalized submaximal.

References

- Abd El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] Acikgoz A., Yuksel S. and Noiri T., *α*-I-preirresolute functions and *β*-I-preirresolute functions, *Bull. Malays. Math. Sci. Soc.* (2) (28), (1) (2005), 1-8.
- [3] Alas O. T, Sanchis M., Thacenko M. G., Thachuk V.V. and Wilson R.G., Irresolvable and submaximal spaces, Homogeneity versus ¾-discreteness and new ZFC examples, *Topology Appl.*, 107 (2000), 259-273.
- [4] Arhangelski A.V., and Collins P.J., On submaximal spaces, Topology Appl., 64 (3) (1995), 219-241.
- [5] Balachandran K., Sundaram P. and Maki H., Generalised Locally Closed Sets and GLC-Continuous Functions, Indian J. Pure and Appl. Math., 27(3)(1996), 235 -244.
- [6] Bhavani K. and Sivaraj D., Ig-Submaximal Spaces, *Bol. Soc. Paran. Mat.* (3s.) v. 331 (2015): 103–108.
- [7] Bourbaki N., Topologic Generale, 3rded., Actualities Scientifiques at Industrielles 1142 (Hermann, paris, 1961).
- [8] Chandrasekhara Rao K., Topology, Narosa Publishing House, New Delhi.
- [9] Csaszar A., Generalized Open Set in Generalized Topologies, *Acta Math. Hungry.* 2005; 106(1-2): 53-66.
- [10] Csaszar A., Modification of Generalized Topologies via Hereditary Classes, Acta Math. Hungry 115 (2007),29-36.
- [11] Ekici E. and Noiri T., Properties of I-submaximal ideal topological spaces, *Filomat*, 24 (4) (2010), 87-94.
- [12] Guthrie J.A., Stone H.E. and Wage M.L., Maximal Connected Hausdroff Topologies, *Topology Proc.* 2(1977), 349-353.
- [13] Hewitt E., A problem of Set-Theoretic Topology, Duke Math. J., 10 (1943), 309-333.
- [14] Indirani K., Sathishmohan P. and Rajendran V., On GR*-Continuous Functions in Topological Spaces, International Journal Of Science, Engineering and Technology Research (Ijsetr), Volume 3, Issue 4, April 2014.
- [15] James R. Munkers, Topology, Prentice Hall of India Private Limited, New Delhi, (1984).
- [16] Julian Dontchev, Between A- and B-sets*, University of Helsinki, Department of Methematics, Finland, [math. GN] 1 Nov 1998.
- [17] Katetov M., On Spaces which do not have disjoint dense subspaces, *Mat. Sb.* 21 (1947) 3-12.
- [18] Kirch M.R., On Hecuitt's *τ*-maximal spaces, J. Austral Math. Soc. 14 (1972) 45-48.
- [19] Levine N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [20] Njåstad O., On Some Classes of Nearly Open Sets, *Pacific J. Math.*, 15 (1965), 961- 970.
- [21] Sheik John M., On w-Closed Sets in Topology, Acta Ciencia India, 4(2000), 389-392.
- [22] Stone M., Application of the Theory of Boolean Rings to General Topology, Trans. *Amer. Math. Soc.*, 41(1937), 374 – 481.
- [23] Zaitsav V., On Certain Classes of Topological Spaces and their Bicompactifications, Dokl. Akad Nauk SSSR, 178(1979), 778-779.