Original Article

A study on hereditary generalized regular submaximal spaces

B. Amudhambigai1, V. Madhuri*****² and M. Rowthri²

¹Assistant Professor of Mathematics, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India ²Research Scholar, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India

***Corresponding Author**

Abstract

V. Madhuri Research Scholar, Sri Sarada College for Women (Autonomous), Salem – 16, Tamilnadu, India E-mail[: madhurivaradarajan@gmail.com](mailto:madhurivaradarajan@gmail.com)

In this paper the concepts of dense-H-sets, codense-H-sets, hereditary generalized submaximal spaces and hereditary generalized regular submaximal spaces are introduced with necessary examples. Also interesting properties and some equivalent statements of hereditary generalized regular submaximal spaces are discussed.

Keywords: Dense-ℋ-sets, Hereditary generalized submaximal space, g-ℋ-open, Pre regular-ℋ-open set, Regular-ℋ-closed

2010 AMS Subject Classification Primary: 54A05, 54A10, 54A20

1. Introduction

The concept of submaximality of general topological spaces was introduced by Hewitt [13] in 1943. He discovered a general way of constructing maximal topologies. In [3], Alas et al. proved that there can be no dense maximal subspace in a product of first countable spaces, while under Booth's Lemma there exists a dense submaximal subspace in $[0,1]$ ^c. The first systematic study of submaximal spaces was undertaken in the paper of Arhangel'ski 3 and Collins [4]. In this paper, several characterizations and further properties of regular H submaximal in hereditary generalized topological spaces are obtained.

The class of submaximal spaces (as well as the name for it) was introduced by Bourbaki [7]. One of the reasons to consider submaximal spaces is provided by the theory of maximal spaces. A space X is called maximal if it is dense-in-itself and no larger topology on the set X is dense-in-itself. It was shown [17, 18], that a space is maximal if and only if it is an extremally disconnected submaximal space without isolated points. Secondly, any connected Hausdorff space which does not admit a larger connected topology is submaximal [12]. Third, submaximal spaces were characterized by Bourbaki as spaces that do not admit a larger topology with the same semi-regularisation [7, p. 1391]. Fourth, nonempty maximal spaces are not decomposable into two nonempty dense complementary subspaces just because they are submaximal-obviously, dense open subsets cannot be disjoint!

2. Preliminaries

Definition 1.2.1 [9]

Let X be a nonempty set and let expX be the power of X. The c ollection μ of subset of X satisfying the following conditions is called generalized topology,

(a) $\emptyset \in \mu$;

(b)
$$
G_i \in \mu
$$
 for $i \in I$ implies $G = \bigcup_{i \in I} G_i \in \mu$.

The elements of μ are called μ -open and their compliments are called μ -closed. The pair (X,μ) is called a generalized topological spaces (GTS).

Definition 1.2.2 [9]

Let (X, μ) be a generalized topological space. Let A be any subset of X. Then the interior of A is defined as the union of all μ -open sets contained in A and it is denoted by i_{μ} (A). That is,

 i_{μ} (A) = U { A \subset X : U \subset A and U \in μ }.

If A is open, then $A = i_{\mu}(A)$.

Definition 1.2.3 [9] Let (X, μ) be a generalized topological space. Let A be any subset of X. Then the closure of A is defined as the intersection of all

closed sets containing A and it is denoted by $cl(A)$ or \overline{A} . That is, $c_{\mu}(A) = \bigcap \{ A \subset X : U \subset A, U^c \in \mu \}.$

If A is closed, then $A = c_{\mu}(A)$.

Definition 1.2.4 [9]

Let X be a nonempty set. A hereditary class $\mathcal H$ of X if $A \in \mathcal H$ and $B \subset A$ then $B \in \mathcal{H}$. A generalized topological spaces (X, μ) with a hereditary class H is Hereditary Generalized Topological Spaces (HGTS) and denoted by (X, μ, \mathcal{H}) .

For each $A \subset X$, $A^*(\mathcal{H}, \mu) = \{x \in X : A \cap G \notin \mathcal{H} \text{ for every } G_i \in$ μ such that $x \in G$. If there is no ambiguity then we write A^* in place of $A^*(\mathcal{H}, \mu)$. For each $A \subset X$, then $c^*_{\mu}(A) = A \cup A^*$.

Definition 1.2.5 [15]

Any subset A of a topological spaces (X, μ) is said to be dense in X if $cl(A) = X$.

Definition 1.2.6 [16]

Any topological space (X, μ) is said to be a submaximal space if every dense subset of X is open.

Definition 1.2.7 [22]

Any topological space (X, μ) is said to be a regular submaximal space if every dense set in (X, μ) is regular open. **Definition 1.2.8 [6]**

A topological space (X, μ) is said to be a g-submaximal space if every dense set is g-open.

Definition 1.2.9 [8]

Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is called a closed map is f(F) is closed in Y whenever F is closed in X. **Definition 1.2.10 [8]**

Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is called a open map is f(F) is open in Y whenever F is open in X.

3. Hereditary generalized regular submaximal space Definition 2.1

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be regular- \mathcal{H} -open if A = $i_{\mu}(c_{\mu}^{*}(A))$. The complement of a regular- H -open set is said to be a regular- H -closed. **Example 2.1**

Let $X = \{a, b, c, d, e\}$, $\mu = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, \{c, d, d\}$ d }, { a, c, d }, { a, b, c, d } } and $\mathcal{H} = \{ \phi, \{ a \}, \{ b \}, \{ c \} \}$. Clearly, μ is a generalized topology and H is a hereditary class and the triple (X, μ, \mathcal{H}) is a hereditary generalized topological space. Let $A = \{a, b, c, d\}$ d } be a subset of X. Then, $A^* = \{a, b, c, d\}$ and so $c^*_{\mu}(A) = A \cup A^* = \{a,$

b, c, d }. Then, i_{μ} ($c_{\mu}^{*}(A)$) = { a, b, c, d }. Hence, A = i_{μ} ($c_{\mu}^{*}(A)$). Therefore, A is regular-ℋ-open.

Definition 2.2

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A be any subset of X. Then the regular H -interior of A (briefly, $R_{\mathcal{H}}$ int(A)) is defined by

 $R_{\mathcal{H}}$ int(A) = ∪ { G ; G ⊆ A and each G ⊆ X is a regular \mathcal{H} -open set }. **Definition 2.3**

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space and A be any subset of X. Then the regular H -closure of A (briefly, $R_{\mathcal{H}}cl(A)$) is defined by

 $R_{\mathcal{H}}cl(A) = \bigcap \{ K : A \subseteq K \text{ and each } K \subseteq X \text{ is a regular } \mathcal{H}\text{-closed set } \}.$ **Definition 2.4**

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be dense- \mathcal{H} -set if $c^*_{\mu}(A) = X$.

Definition 2.5

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be codense- \mathcal{H} -set if X\A is dense- \mathcal{H} -set. **Example 2.2**

Let $X = \{ a, b, c \}, \mu = \{ \phi, X, \{ a \}, \{ a, b \}, \{ b, c \} \}$ and $H = \{\phi, \{\mathsf{a}\}\}\.$ Clearly, μ is a generalized topology, H is a hereditary class and the triple (X, μ, \mathcal{H}) is a hereditary generalized topological space. Let $A = \{ b, c \}$ be a subset of X. Then $A^* = \{ a, b, c \}$. Hence $c^*_{\mu}(A)$ = X. Therefore, A is dense $\mathcal H$ set. Hence $X \setminus A$ = { a } is codense- $\mathcal H$ -set.

Definition 2.6

Any hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a hereditary generalized submaximal space if every dense-ℋ-set (resp. codense-ℋ-set) in (X, μ, ℋ) is μ-open (resp. μ-closed). **Example 2.3**

Let $X = \{ a, b, c \}, \mu = \{ \phi, \{ c \}, \{ a, c \}, \{ b, c \}, X \}$ and $\mathcal{H} = \{ \phi, \{ a \}, \{ b \}, \{ a, b \} \}.$ Clearly, μ is a generalized topology, \mathcal{H} is a hereditary class and the triple (X, μ, \mathcal{H}) is a hereditary generalized topological space. Then dense- H -sets are { c }, { a, c }, { b, c } and X. Clearly all dense-*X*-sets are μ -open sets. Hence (X, μ, \mathcal{H}) is said to be hereditary generalized submaximal space.

Definition 2.7

Any hereditary generalized topological space (X, μ, \mathcal{H}) is said to be a hereditary generalized regular submaximal space if every dense- H -set in (X, μ, H) is regular- H -open.

Example 2.4

Let $X = \{ a, b, c \}, \mu = \{ \phi, \{ c \}, \{ a, c \}, \{ b, c \}, X \}$ and $H = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} \}$. Clearly, μ is a generalized topology, *H* is a hereditary class and the triple (X, μ, *H*) is a hereditary generalized topological space. Then dense-ℋ-set is X. Clearly X is μ -open set. Hence (X, μ, \mathcal{H}) is said to be hereditary generalized regular submaximal space.

Theorem 2.1

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. For any subset A of X, the following statements are equivalent:

(a) X is hereditary generalized regular submaximal,

(b) Every codense- H -subset A of X is regular- H -closed.

Proof:

(a) ⇒ (b)

Let A be a codense- H -subset of X. Since X\A is dense- H -set, by (a), X\A is regular-*H* -open. Thus, A is regular-*H* -closed.

(b) ⇒ (a)

Let A be a dense- $\mathcal H$ -subset of X. Since X\A is codense- $\mathcal H$ -set, X\A is regular- H -closed. Thus A is regular- H -open.

Proposition 2.1

Every hereditary generalized regular submaximal space is a hereditary generalized submaximal space.

Proof:

Let (X, μ, \mathcal{H}) be a hereditary generalized regular submaximal space and $A \subseteq X$ be a dense-*H*-set. Since (X, μ, \mathcal{H}) is hereditary generalized regular submaximal, A is regular-ℋ-open in (X, μ, H). Since every regular- H -open is μ-open, A is μ-open. Hence (X, μ, H) is a hereditary generalized submaximal space as every dense- H set is a μ -open set in (X, μ, \mathcal{H}) .

Definition 2.8

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be

 g ² ∴ open if c_{^{$μ$}}(A) ⊆ U whenever A ⊆ U and U is μ-closed.

Note 2.1

Every regular-ℋ-open is *g*-ℋ-open.

Proposition 2.2

Every hereditary generalized regular submaximal space is hereditary generalized *g*-submaximal space.

Proof:

Let $A \subseteq X$ be dense-*H*-set in a hereditary generalized regular submaximal space (X, μ , H). Since every dense-*H*-set of X is a regular-ℋ-open, A is regular-ℋ-open in (X, μ, ℋ). Since every regular*-*ℋ-open is *g-*ℋ-open, A is *g-*ℋ-open. Hence every hereditary generalized regular submaximal space is hereditary generalized *g*submaximal space.

Definition 2.9

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Any subset A of X is said to be pre regular- \mathcal{H} -open if $A \subseteq R_{\mathcal{H}}$ int $(c^*_{\mu}(A))$. **Proposition 2.3**

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. For any subset A of X, the following statements are equivalent:

- (a) A is pre regular- H -open
- (b) $A = U \cap D$ where U is regular-*H*-open and D is dense-*H*-set in X.

Proof:

(a) ⇒ **(b)**

If A is pre regular *H*-open, then $A \subseteq R_{\mathcal{H}}$ int($c^*_{\mu}(A)$). Let U = $R_{\mathcal{H}}$ int(c_{μ}(A)), then U is a regular *H*-open set. Let D = X – (U – A) = (X – U) ∪ A.

Since $R_{\mathcal{H}}\text{int}(c_{\mu}^{*}(A)) \subseteq c_{\mu}^{*}(A)$ and so $-R_{\mathcal{H}}\text{int}(c_{\mu}^{*}(A)) \supseteq -c_{\mu}^{*}(A)$.

Hence $X - R_{\mathcal{H}}\text{int}(c^*_{\mu}(A)) \supseteq X - c^*_{\mu}(A)$ from which $X - U \supseteq X - c^*_{\mu}(A)$.

Also, $X = c^*_{\mu}(A) \cup (X - c^*_{\mu}(A))$ \subseteq c^{*}_µ(A) \cup (X – U)

$$
\subseteq c^*_{\mu}(A) \cup c^*_{\mu}(X-U)
$$

$$
\subseteq c^*_{\mu}[A\cup (X-U)] \subseteq c^*_{\mu}(D).
$$

Thus $X \subseteq c^*_{\mu}(D)$. Further $c^*_{\mu}(D) \subseteq X$. Therefore $X = c^*_{\mu}(D)$. Hence D is dense- H -set. Therefore A = U \cap D.

$$
(b) \Rightarrow (a)
$$

If $A = U \cap D$, where $U \in \text{regular } \mathcal{H}$ -open and D is dense \mathcal{H} set, then $A \subseteq U$, $R_{\mathcal{H}}$ int $(c_{\mu}^*(A)) \subseteq R_{\mathcal{H}}$ int $(c_{\mu}^*(U))$. Since $U = U \cap X = U \cap X$ $c^*_{\mu}(D) \subseteq c^*_{\mu}(U \cap D) = c^*_{\mu}(A)$. Hence $U \subseteq c^*_{\mu}(A)$. Then $R_{\mathcal{H}}int(c^*_{\mu}(U)) \subseteq$ $R_{\mathcal{H}}$ int($c_{\mu}^{*}(A)$). Therefore, $R_{\mathcal{H}}$ int($c_{\mu}^{*}(U)$) = $R_{\mathcal{H}}$ int($c_{\mu}^{*}(A)$). So that A is pre regular ℋ-open.

Proposition 2.4

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then the following statements are equivalent:

(a) (X, μ , \mathcal{H}) is a hereditary generalized regular submaximal space.

(b) Every pre regular-ℋ-open set is regular-ℋ-open.

Proof: $(a) \Rightarrow (b)$

Suppose that (X, μ, \mathcal{H}) is hereditary generalized regular submaximal and $A \subseteq X$ be pre regular- H -open. By Proposition 2.3, $A =$ U ∩ D, where U is regular *H* -open, D is a dense-*H* -set. Since (X, μ , *H*) is hereditary generalized regular submaximal, D is regular-ℋ-open. Since intersection of two regular- H -open sets is a regular- H -open set, A is a regular- H -open set.

$$

Let A be any pre regular H -open. By hypothesis A is regular- H -open. By Proposition 2.3, $A = U \cap D$, where U is regular *H*-open, D is a dense-*H*-set in (X, μ , *H*). Since A and U are regular *H*open, D must be regular *H*-open in $(X, μ, H)$. Thus every dense-*H*-set is a regular-*H*-open set in (X, μ, \mathcal{H}) . Hence (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.

Theorem 2.2

For a hereditary generalized topological space (X, μ, \mathcal{H}) , the following properties are equivalent:

- (a) (X, μ , \mathcal{H}) is a hereditary generalized regular submaximal space.
- (b) For all $A \subseteq X$, if $A \setminus R_{\mathcal{H}}$ int $(A) \neq \emptyset$, then $A \setminus R_{\mathcal{H}}$ int $(c^*_{\mu}(A)) \neq \emptyset$. **Proof:**

(a) ⇒ (b)

Let $A \subseteq X$ and $A \setminus R_{\mathcal{H}}$ int(A) $\neq \phi$. Suppose that $A \setminus R_{\mathcal{H}}$ int($c^*_{\mu}(A)$) = ϕ . Then $A \subseteq R_{\mathcal{H}}$ int($c^*_{\mu}(A)$). This implies that A is pre regular \mathcal{H} -open. Since (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space, by Proposition 2.4, A is regular *H*-open. Thus, $A \ R_{\mathcal{H}}$ int(A) = $A \ A = \phi$. This is a contradiction. Hence $A \setminus R_{\mathcal{H}}\text{int}(c^*_{\mu}(A)) \neq \phi$.

(b) ⇒ (a)

As by Proposition 2.4, it is sufficient to show that every pre regular-ℋ-open set is regular-ℋ-open. Let A be pre regular-ℋ-open. Then $A \subseteq R_{\mathcal{H}}$ int $(c^*_{\mu}(A))$. As a contrary, suppose that A is not regular-*K*-open. Then $A \nsubseteq R_{\mathcal{H}}int(A)$ and hence $A \setminus R_{\mathcal{H}}int(A) \neq \phi$. By (b), $A \setminus R_{\mathcal{H}}$ int $(c^*_{\mu}(A)) \neq \phi$. Thus, $A \nsubseteq R_{\mathcal{H}}$ int $(c^*_{\mu}(A))$. This is a contradiction. Thus A is regular H open. Therefore by Proposition 2.4, (X, μ, \mathcal{H}) is hereditary generalized regular submaximal space.

Proposition 2.5

Let (X, μ, \mathcal{H}) be a hereditary generalized topological space. Then the following statements are equivalent:

(a) (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.

(b) $c^*_{\mu}(A) - A$ is regular-*X*-closed for every $A \subset X$.

Proof:

 $(a) \Rightarrow (b)$

Let (X, μ, \mathcal{H}) be a hereditary generalized regular submaximal space and $A \subset X$. Consider $(X - (c^*_{\mu}(A) - A)) = (X$ $c^*_{\mu}(A)$) U A. Then c^*_{μ} $\mu(X - (c_\mu^*(A) - A))) = c_\mu^*((X - c_\mu^*(A)) \cup A) \supset (X$ $c_{\mu}^{*}(A)$) \cup $c_{\mu}^{*}(A) = X$. Thus $c_{\mu}^{*}(X - (c_{\mu}^{*}(A) - A))) = X$. Hence $X - (c_{\mu}^{*}(A) - A)$ A) is a dense- H -set. Since (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space, X – ($c^*_{\mu}(A)$ – A) is regular $\mathcal H$ -open. Therefore $c^*_{\mu}(A)$ – A is regular- $\mathcal H$ -closed for every $A \subseteq X$.

 $$

Assume that $c^*_{\mu}(A) - A$ is regular *H*-closed for every $A \subseteq X$. Let A be a dense- $\mathcal H$ -set in $(X, \mu, \mathcal H)$. Then $c^*_{\mu}(A) = X$. Since $c^*_{\mu}(A) - A$ is regular-*X*-closed for every $A \subseteq X$, $X - A$ is regular-*X*-closed which implies that A is a regular-*H*-open set for every $A \subseteq X$. Hence (X, μ, \mathcal{H}) is a hereditary generalized regular submaximal space.

Theorem 2.3

Let $(X, \mu_1, \mathcal{H}_1)$ and $(Y, \mu_2, \mathcal{H}_2)$ be any two hereditary generalized topological spaces. Let $f : (X, \mu_1, \mathcal{H}_1) \to (Y, \mu_2, \mathcal{H}_2)$ be a μ-open surjective function. If $(X, μ₁, \mathcal{H}_1)$ is hereditary generalized regular submaximal, then $(Y, \mu_2, \mathcal{H}_2)$ is hereditary generalized submaximal.

Proof:

Let $A \subseteq Y$ be a dense-*H*-set. Since f is surjective, $f^{-1}(A)$ is dense- $\mathcal H$ -set in (X, μ_1 , $\mathcal H_1$). Since (X, μ_1 , $\mathcal H_1$) is a hereditary generalized regular submaximal space, $f^{-1}(A)$ is regular- $\mathcal H$ -open in $(X, \mu_1, \mathcal{H}_1)$. Since every regular *H*-open set is μ -open, $f^{-1}(A)$ is μ_1 -open in (X, μ_1) , \mathcal{H}_1). Since f is a μ-open surjective function, f(f⁻¹(A)) = A is μ₂-open in $(Y, \mu_2, \mathcal{H}_2)$. Thus every dense- \mathcal{H} -set is μ_2 -open in $(Y, \mu_2, \mathcal{H}_2)$. Hence, $(Y, \mu_2, \mathcal{H}_2)$ is hereditary generalized submaximal.

References

- [1] Abd El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., β -open sets and β -continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12(1983), 77-90.
- [2] Acikgoz A., Yuksel S. and Noiri T., α -I-preirresolute functions and -I-preirresolute functions, *Bull. Malays. Math. Sci. Soc.* (2) (28), (1) (2005) , 1-8.
- [3] Alas O. T, Sanchis M., Thacenko M. G., Thachuk V.V. and Wilson R.G., Irresolvable and submaximal spaces, Homogeneity versus ¾-discreteness and new ZFC examples, *Topology Appl.,* 107 (2000), 259-273.
- [4] Arhangelski A.V., and Collins P.J., On submaximal spaces, Topology Appl., 64 (3) (1995), 219-241.
- [5] Balachandran K., Sundaram P. and Maki H., Generalised Locally Closed Sets and GLC-Continuous Functions, Indian J. Pure and Appl. Math., 27(3)(1996), 235 -244.
- [6] Bhavani K. and Sivaraj D., Ig-Submaximal Spaces, *Bol. Soc. Paran. Mat.* (3s.) v. 331 (2015): 103–108.
- [7] Bourbaki N., Topologic Generale, 3rded., Actualities Scientifiques at Industrielles 1142 (Hermann, paris, 1961).
- [8] Chandrasekhara Rao K., Topology, Narosa Publishing House, New Delhi.
- [9] Csaszar A., Generalized Open Set in Generalized Topologies, *Acta Math. Hungry.* 2005; 106(1-2): 53-66.
- [10] Csaszar A., Modification of Generalized Topologies via Hereditary Classes, *Acta Math. Hungry* 115 (2007),29-36.
- [11] Ekici E. and Noiri T., Properties of I-submaximal ideal topological spaces, *Filomat,* 24 (4) (2010), 87-94.
- [12] Guthrie J.A., Stone H.E. and Wage M.L., Maximal Connected Hausdroff Topologies, *Topology Proc.* 2(1977), 349-353.
- [13] Hewitt E., A problem of Set-Theoretic Topology, *Duke Math. J.,* 10 (1943), 309-333.
- [14] Indirani K., Sathishmohan P. and Rajendran V., On GR*- Continuous Functions in Topological Spaces, *International Journal Of Science, Engineering and Technology Research (Ijsetr)*, Volume 3, Issue 4, April 2014.
- [15] James R. Munkers, Topology, Prentice Hall of India Private Limited, New Delhi, (1984).
- [16] Julian Dontchev, Between *A* and *B*-sets^{*}, University of Helsinki, Department of Methematics, Finland, [math. GN] 1 Nov 1998.
- [17] Katetov M., On Spaces which do not have disjoint dense subspaces, *Mat. Sb*. 21 (1947) 3-12.
- [18] Kirch M.R., On Hecuitt's τ -maximal spaces, *J. Austral Math. Soc.* 14 (1972) 45-48.
- [19] Levine N., Generalized Closed Sets in Topology, Rend. *Circ. Mat. Palermo*, 19 (2) (1970), 89-96.
- [20] Njåstad O., On Some Classes of Nearly Open Sets, *Pacific J. Math.,* 15 (1965), 961- 970.
- [21] Sheik John M., On w-Closed Sets in Topology, *Acta Ciencia India*, 4(2000), 389-392.
- [22] Stone M., Application of the Theory of Boolean Rings to General Topology, Trans. *Amer. Math. Soc*., 41(1937), 374 – 481.
- [23] Zaitsav V., On Certain Classes of Topological Spaces and their Bicompactifications, Dokl. Akad Nauk SSSR, 178(1979), 778-779**.**