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1. Introduction 
The seal [1] consists of a fixed plate called primary seal in 

form of a ring mounted on a support and a circular plate called 

secondary seal placed parallel to hand over the seal ring as illustrated 

in Fig1.The secondary seal is capable of rotating about a shaft which 

acts as a common axis for both the seals. The small passage/gap 

between the primary and secondary seals is called film thickness. The 

power-law fluid is allowed to enter the region between the secondary 

seal (plate) and the annular part of the ring through the latter; 

simultaneously the secondary seal is set to rotate about the shaft, 

bringing about vigorous motion of the fluid in the seal region. 

However, because of radial flow of the fluid there occurs from the seal 

region a flux of the fluid called leakage. Needless to mention that the 

main purpose of the seal is to minimize the leakage. Prawal Sinha[1] 

and his coauthor mostly gave numerical solution to non-Newtonian 

power-law fluid flow through the seal .In this paper is worked out an 

analytical solution to the fluid flow effecting some minor changes in 

the boundary conditions but without sacrifice of the physical 

significance and generality. 

 

2. Equations of motion for the seal  
Let (vr, 𝑣𝜃 , vz ) be the components of the fluid 

velocity 𝑖𝑛 r,𝜃, 𝑧 directions at (r,𝜃, 𝑧) 𝑝𝑜𝑖𝑛𝑡 in cylindrical coordinates 

with respect to the origin at the centre of the ring. Then the pressure 

equation1 is  
𝑑𝑝

𝑑𝑟
=

𝜕𝑧𝑟

𝜕𝑧
+ 𝜌

𝑣𝜃
2

𝑟
                                                                                   (1)                                                

∂τzθ

∂z
= 0                                                                                             (2) 

where  p is the pressure, a function  of the radial distance 

r;𝜏𝑧𝑟  ,𝜏𝑧𝜃  𝑎𝑟𝑒 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝜌 𝑡𝑒 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦.   

𝑇𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦  𝑖𝑠 
1

𝑟

𝜕

𝜕𝑟
 𝑟𝑣𝑟 +

𝜕𝑣𝑧

𝜕𝑧
= 0    𝑓𝑜𝑟 0 ≤ 𝑟 < 𝑟1                                     (3) 

𝑟1𝑣𝑟1
= 𝑟𝑣𝑟 = 𝑟2𝑣𝑟2    

for 𝑟1 ≤ 𝑟 ≤ 𝑟2                                      (3.1)            

The shear stresses1 for the power- law model1 are 

𝜏𝑧𝑟  = 𝑚|
𝜕𝑣𝑟
𝜕𝑧

|𝑛−1
𝜕𝑣𝑟
𝜕𝑧

                                                                                   (4)     

𝜏𝑧𝜃 = 𝑚|
𝜕𝑣𝜃

𝜕𝑧
|𝑛−1 𝜕𝑣𝜃

𝜕𝑧
                                                                                       (5)  

where m and n are constants called consistency index and flow index 

respectively for the fluid flow. 

The boundary conditions1 are  

vθ = 𝑜 𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 𝑣𝜃  =r𝜔  𝑎𝑡 𝑧=h                                                          (6) 

where h is the thickness of the film, 

and𝜔 𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑒 seal about the shaft. 

By use of equation (2), (5) and (6) sinha1 and his coauthor obtained  

 𝑣𝜃 =
𝑟𝜔𝑧


                                                                             (7) 

and using (7) and (4) in equation (2) they1 obtained 
𝑑𝑝

𝑑𝑟
= 𝑚𝑛

𝜕2𝑣𝑟

𝜕𝑧2
|
∂vr

∂z
|n−1 +

𝜌𝑟𝜔2𝑧2

2
                               (8) 

Now unlike Sinha[1] and his coauthor in this paper an 

attempt is made to look for closed- form solution to equation(8) and 

(3) i.e. to find explicitly the pressure p and the velocity components , 

𝑣𝑧 ,  𝑣𝑟  subject to the boundary conditions relevant to the seal 

performance. 

                       Analytical Solution in closed form 

Since the radial velocity component 

𝑣𝑟  𝑜𝑓 𝑡𝑒 𝑓𝑙𝑢𝑖𝑑 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑡 r and z coordinates, we can have 

the non-dimensional velocity component as 

𝑣𝑟 = 𝑅 𝑟 Z z                                                                                            (9)  

where

𝑅 𝑟  𝑎𝑛𝑑𝑍 𝑧  𝑎𝑟𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 functions of r and z, putting which in  8  

and introducing non- dimensional coordinates 

                               𝑟 =
𝑟

𝑟2
 ,𝑟1 =

𝑟1

𝑟2
, 𝑧 =

𝑧


,  𝑣𝑟 =

𝑣𝑟

𝑟2𝜔
 ,     𝑝 =

𝑝−𝑃

𝑃𝑖−𝑃
                                   (10) 

we get 
1

𝐸𝑢    

𝑑  𝑝 

𝑑  𝑟 
=

1

Rn

𝜕  2  𝑣𝑟    

𝜕  𝑧 2
|
𝜕𝑣𝑟   

𝜕𝑧 
|𝑛−1  + 𝑟  𝑧 2                                                                         (11) 

where    𝐸 𝑢=𝜔𝑟2/ 
(𝑃𝑖−𝑃)

𝜌
, 

1

Rn
=

Re

(Re ω)2
=

𝑚𝑛

𝜔2𝜌
(
𝜔𝑟2


)𝑛−1                                 (12) 

𝑟1,𝑟2  are the inner and outer radii of the ring so that 𝑟2  is the radius of 

the plate while 𝑃𝑖  is the inlet pressure and P the ambient pressure; 

𝑄 =
𝑄

(𝜔𝑟2)𝑟2
    where Q is the flux   and 

 Reω =
(𝜔𝑟2)𝜌

𝑚𝑛
(



𝜔𝑟2
)𝑛−1                                                                                     (13) 

 Re = ρ
ωr2

2

mn
(



𝜔𝑟2
)𝑛−1  

Employing (9) in (11) we after dropping the bar sign can get the 

following equation 
1

𝐸𝑢
2 =

1

𝑟

𝑑𝑝

𝑑𝑟
 =− 

𝑅𝑛  𝑟 

𝑅𝑛 𝑟

d2Z

dz2
|(

𝑑𝑍

𝑑𝑧
)|𝑛−1 + z2 = −c constant                               (14) 

0≤ 𝑟 ≤ 𝑟1 (The bar sign is kept understood) so that  
1

𝐸𝑢
2

𝑑𝑝

𝑑𝑟
= −𝑐𝑟                                                                                                         (15) 

With the boundary conditions 

p=𝑝𝑖=1at r=𝑟1 and p=0 at r=1                                                                        (16) 

Solution to (15) subject to (16) yields the pressure equation 

P=1-c
𝐸𝑢

2 𝑟2−𝑟1
2 

2
                                                                                                     17  

where c=
2

𝐸𝑢
2(1−𝑟1

2)
                                                                                            (17.1) 

so that p=
1−𝑟2

1−𝑟1
2 

Abstract 
This paper deals with seal performance of a non-Newtonian power-law fluid. The 

mechanism comprises a primary seal ring flexibly mounted on a support and a secondary seal 
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earlier authors in closed form subject to a set of boundary conditions compatible with the 
fluid motion and as such the leakage velocity- components have been determined analytically 
for pseudo plastic fluids and dilatants. Finally numerical examples have been illustrated in 
case of some non-Newtonian fluids. 
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To obtain equation (14) amenable to analytical solution, of 

course, with fulfillment of some other boundary conditions we must 

have 
𝑅𝑛

𝑅𝑛 𝑟
 =𝑐1(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 )                                                                                                (18) 

which because of (9) gives 

𝑣𝑟(r, z)=(c1Rn
r)1/nZ(z)                                                                                  (19) 

for 0≤ 𝑟 ≤ 𝑟1 ,z≠ 0 

and because of the equation of continuity suggesting the rate of flow 

into the annular region equal to the flux, 

𝑣𝑟(r,z)= 
r1

r
(c1Rn

r1)1/nZ(z) for 𝑟1 ≤ r≤ 𝑟2=1 , z≠ 0                                (20) 

so that equation(14) leads to 

𝑐1
d2Z

dz2
|(

𝑑𝑍

𝑑𝑧
)|𝑛−1 = (𝑐 + 𝑧2)  

which in tandem with (19) subject to the boundary conditions 
𝜕𝑣𝑟

𝜕𝑧
=0       at z=1 

𝑣𝑟=0       at z=1                                                                                                 (21) 

z(1) =0 

can be solved as 
𝑑Z

𝑑𝑧
=  −[

𝑛

𝑐1
{𝑐 1 − 𝑧 + (

1−𝑧3

3
)]1/𝑛                                                                (22) 

Z= [
𝑛

𝑐1
{𝑐 1 − 𝑧 + (

1−𝑧3

3
)]1/𝑛𝑑𝑧

1

𝑧
                                                               (23) 

and as such in view of relations (9) and (18) 

𝑣𝑟(r,z)= (Rnrn)
1

n    𝑐 1 − 𝑧 +  
1−𝑧3

3
   

1

𝑛
𝑑𝑧

1

𝑍
                                      (24) 

0≤ 𝑟 ≤  𝑟1 ,z≠ 0 

Now because of (19), equation (3) turns out to be 
𝜕𝑣𝑧

𝜕𝑧
 = −(c1Rn

)1/n𝑟
1−𝑛

𝑛 Z.(
1+𝑛

𝑛
)                                                                        (25)                  

Boundary conditions for velocity component 𝑣𝑧(r,z) are 

𝑣𝑧(r,1) =0                                                                                                        (26) 

𝑣𝑧(r,0) = 𝑣1𝑟
1−𝑛

𝑛         𝑓𝑜𝑟  0 ≤ 𝑟 < 𝑟1 ,                                                     (27) 

𝑣𝑧(r,0) =0                        𝑓𝑜𝑟  0 ≤ 𝑟 ≤ 𝑟2 ,                                                 (28) 

  

which hold on integration of (25) by use of (23) 

𝑣𝑧(r,z) =−(c1Rn
)1/n𝑟

1−𝑛

𝑛 (
1+𝑛

𝑛
) 𝑍 𝑡 𝑑𝑡                                                  (29)

𝑧

1
 

(Integration by parts) 

=−(c1Rn
)1/n𝑟

1−𝑛

𝑛
1+𝑛

𝑛
[zZ(z) –𝑍(1) −  

𝑑𝑍

𝑑𝑡

𝑧

1
tdt] 

𝑣𝑧(r,z) ==−(nRn )1/n𝑟
1−𝑛

𝑛
1+𝑛

𝑛
 {𝑐 1 − 𝑡 +

1−𝑡3

3
}1/𝑛(

1

𝑧
z-t)dt   z≠ 0  (30) 

Further equation (24) suggests the boundary conditions for𝑣𝑟(r,z) as 

𝑣𝑟(r,0)= 𝑣0𝑟
1/𝑛  𝑓𝑜𝑟  0 ≤ 𝑟 ≤ 𝑟1 ,                                                              (31) 

𝑣𝑟(r,0)=0 𝑓𝑜𝑟  0 ≤ 𝑟 ≤ 𝑟2 ,                                                                        (32) 

where   𝑣0= (Rn n)
1

n    𝑐 1 − 𝑧 +  
1−𝑧3

3
   

1

𝑛
𝑑𝑧

1

0
≥ 0                      (33) 

𝑣1= (Rnn)
1

n
1+𝑛

𝑛
   𝑐 1 − 𝑧 +  

1−𝑧3

3
   

1

𝑛
𝑧𝑑𝑧

1

0
≥ 0                             (34) 

In the light of (30). 

 

3. Performance of a newtonian fluid 
For a Newtonian fluid n=1 and then in view of equations (24) to (34) 

the velocity components become 

𝑣𝑟(r,z)= (Rnr) ( [{𝑐 1 − 𝑧 +  
1−𝑧3

3
 }]1𝑑𝑧

1

𝑧
  for r∈  0, 𝑟1   , 𝑧 ≠ 0 

= Rn r{ 
1

3
+ c  1 − z − c(

1−z2

2
)−

1−𝑧4

12
}                                                (35) 

 

Because of equation (20) one gets using (23) 

  𝑣𝑟(r,z)= 
r1

2

r
(Rn) ( [{𝑐 1 − 𝑧 +  

1−𝑧3

3
 }]1𝑑𝑧

1

𝑍
, for z  ≠ 0, r∈ [𝑟1,𝑟2]  (36 

= 
r1

2

r
 Rn [ c +

1

3
  1 − 𝑧 − 𝑐

1−𝑧2

2
−

1−𝑧4

12
]                                           (36) 

 𝑣𝑟(r,0)= = Rnr(
c

2
+

1

4
)        r∈ [0, 𝑟1]                                                     (37) 

Using properties of definite integrals in (3O), we get 

𝑣𝑧(r,z)=2Rn[  𝑐 1 − 𝑧 +  
1−𝑧3

3
  𝑧𝑑𝑧

1

𝑧
− 𝑧  {c 1 − t +

1−t3

3

1

z
}dt] 

=2Rn[ 
 c+

1

3
  1−z2 

2
−

c 1−𝑧3 

3
−

1−𝑧5

15
 − 𝑧{ 

1

3
+ c  1 − z −

 c(
1−z2

2
)−

1−𝑧4

12
}]                                                                                          (38) 

𝑣𝑧(r,0)= Rn (
c

3
+

1

5
)           𝑓𝑜𝑟  0 ≤ 𝑟 < 𝑟1 ,                                                    (39) 

Equation(38) can be further simplified as 

𝑣𝑧(r,z) = Rn [(c +
1

3
)(1 − z)2 +

c 1−𝑧3 

3
+

1−𝑧5

30
]    z≠ 0 

 

4. Performance of non-newtonian fluid 
For non-Newtonian fluid the velocity components 𝑣𝑟(r,z) and 𝑣𝑧(r,z) as 

in (24) and (31) can  be formulated by Binomial expansion in series as 

𝑣𝑟(r,z)= (Rn rn)
1

n  c +
1

3
 

1

n
 {1 −

cz +
𝑧3

3

 c+
1

3
 

1

z
 dz              0≤ 𝑧 ≤ 1 

SIince z≤ 1,
cz +

𝑧3

3

 c+
1

3
 
 ≤ 1; 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑐>>1 depending on (12) and (17.1) 

we can replace  𝑧3  𝑏𝑦 𝑧  in the above integral for desired 

approximation so that 

vr(r,z)=( Rnrn)
1

n  c +
1

3
 

1

n
  (−1)𝑝

1

𝑛
 

1

𝑛
−1 ……(

1

𝑛
−𝑝+1)𝑧𝑝𝑑𝑧

1.2.3.4…………..𝑝                    

∞
0

1

𝑧
 

=( Rn rn)
1

n  c +
1

3
 

1

n
 (−1)𝑝

1

𝑛
 

1

𝑛
−1 …… 

1

𝑛
−𝑝+1 (1−𝑧𝑝+1)

1.2.3.4…………..𝑝(𝑝+1)                   

∞
0                               (40) 

𝑣𝑟(𝑟1,z) is given by replacing r by 

𝑟1 𝑖𝑛  40 . For p = 0, the first term of the summation is equal to 1. 

Similarly in the light of relation (30), 

𝑣𝑧(r,z) =(nRn )1/n𝑟
1−𝑛

𝑛
1+𝑛

𝑛
 c +

1

3
 

1

n
 (−1)𝑝

1

𝑛
 

1

𝑛
−1 …… 

1

𝑛
−𝑝+1 𝑝 ′

1.2.3.….𝑝(𝑝+1)(𝑝+2)                   

∞
0  (41) 

where 𝑝′ = 𝑧 𝑝+2 − 𝑧 𝑝 + 2 + 𝑝 + 1 

But for 0≤ 𝑟 < 𝑟1, 

𝑣𝑧(r,0) =(nRn )1/n𝑟
1−𝑛

𝑛
1+𝑛

𝑛
 c +

1

3
 

1

n
 (−1)𝑝

1

𝑛
 

1

𝑛
−1 …… 

1

𝑛
−𝑝+1 (𝑝+1)

1.2.3.….𝑝(𝑝+1)(𝑝+2)                   

∞
0  (42) 

For p=0, the first term of the summation is 1.Needless to mention that 

p is an integer. 

AXIAL FORCE AND LEAKAGE 

The axial force1 ie load capacity is re-determined in the context of the 

present design: 

L=𝜋𝑟1
2 𝑝1 −𝑃 + 2𝜋  (𝑝 − 𝑃)

𝑟2

𝑟1
rdr   

which in non-dimensional form in consequence of (10),(16) and (17) 

is given by dropping 𝜋: 

𝐿 =𝑟1
2 + 2 𝑝𝑟𝑑𝑟 =

1

𝑟1
( 𝑟1

2+1)/2                                                                    (43) 

(Dropping the bar sign on the right; 𝑟2 = 1,𝑃 = 0,  𝐿 =L/𝜋) 

In consequence of(3.1),(10) and (24), the dimensionless flux ie, 

leakage 𝑎𝑓𝑡𝑒𝑟 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑒 𝑏𝑎𝑟 𝑠𝑖𝑔𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦  

Q=𝐿𝑡𝜖→0  𝑟1
1

𝜖
𝑣𝑟1

𝑑𝑧 =𝐿𝑡𝜖→0𝑟1𝑣𝑟1
𝑧|𝜖

1 − lim𝜖→0  𝑟1
1

𝜖

𝜕𝑣𝑟1

𝜕𝑧
zdz 

Q=(Rn n)
1

n r1

n +1

n     𝑐 1 − 𝑧 +  
1−𝑧3

3
   

1

𝑛
𝑧𝑑𝑧

1

0
                                         (44) 

( 𝑟1 ≤ r≤ 𝑟2);by use of (19). 

Hence the leakage in case of Newtonian flow ie when n=1 is obtained 

as 

𝑄1=Rnr1
2    𝑐 1 − 𝑧 +  

1−𝑧3

3
   

1

𝑧𝑑𝑧
1

0
 

= Rn r1
2(

c

6
+

1

10
)                                                                                                 (45) 

The continuity of fluid flow with the principle of conservation of mass 

entails that the flux through the seal ie leakage equals the rate Q ’ at 

which the fluid flows into the annular space through the ring. This 

aspect is ratified as follows by use of equation (27),(34) and (44) in 

non-dimensional form: 

Q’= 𝑟𝑣𝑧 r, 0 dr =  𝑣1
 𝑟1

0

 𝑟1

0
𝑟

1−𝑛

𝑛 rdr ==(Rnn)
1

n r1

n+1

n     𝑐 1 − 𝑧 +
1

0

1−𝑧331𝑛𝑧𝑑𝑧 =Q 

The dimensionless leakage Q1.5 for dilatant fluid with n=1.5 is given by 

=(
3

2
𝑅1.5)2/3𝑟1

5/3
 c +

1

3
 

2/3

  {1 −
cz +

𝑧3

3

 c+
1

3
 

1

0
 zdz    For z 

≤ 1, 𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑 

 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑙𝑦 𝑎𝑛𝑑 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 the cube and other higher powers of 

cz +
𝑧3

3

 c+
1

3
 

 which are very small in this context,           

Q1.5 = (
3

2
𝑅1.5)2/3𝑟1

5/3
 c +

1

3
 

2/3

 z[1 −
2

3

1

0

cz +
𝑧3

3

 c+
1

3
 

+
2

3
(

2

3
−1)

2 c+
1

3
 

2 (cz +
𝑧3

3
)2]dz                
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=  
3

2
𝑅1.5 

2

3
𝑟
1

5

3  c +
1

3
 

2

3
[

1

2
−

2 5𝑐+1 

15 3𝑐+1 
−

1

 3𝑐+1 2
(

c2

4
+
𝑐

9
+

1

72
)]                        (46) 

The dimensionless leakage for a pseudoplastic fluid(n<1), say, n=.5 is   

𝑄1

2
  =(

𝑅.5

2
)2𝑟1

3   𝑐 1 − 𝑧 +  
1−𝑧3

3
  

21

0
zdz (Integrating by parts with 

second form as 𝑧𝑑𝑧) 

=  
𝑅.5

2
 

2

𝑟1
3   𝑐 1 − 𝑧 +  

1−𝑧3

3
  

2
1

0
(𝑐 + z2) z2dz 

=  
𝑅.5

2
 

2

𝑟1
3(

𝑐2

12
+

4𝑐

45
+

1

40
)                                                                                       (47) 

The dimensionless leakage for a dilatant fluid, n=2,is obtained as 

Q2 = (2𝑅2)1/2𝑟1
3/2

  𝑐 1 − 𝑧 +  
1 − 𝑧3

3
  

1/21

0

𝑧𝑑𝑧 

Neglecting cube and other powers 

of  
cz +

𝑧3

3

 c+
1

3
 
≤ 1 𝑓𝑜𝑟 𝑧 ≤

1 𝑖𝑛 𝑡𝑒 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡𝑒 𝑎𝑏𝑜𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑 ,𝑤𝑒 𝑔𝑒𝑡 

Q2 = (2𝑅2)1/2𝑟1
3/2

 c +
1

3
  z[1 −

1

2

1

0

cz +
𝑧3

3

 c+
1

3
 

+
1

2
(

1

2
−1)

2 c+
1

3
 

2 (cz +
𝑧3

3
)2]dz         

=      (2𝑅2)1/2𝑟1
3/2

 c +
1

3
 [

1

2
−

c+
1

4

2 3c+1 
−

1

8
 
9𝑐2

4
+𝑐+

1

8

 3c+1 2
]                                 (48) 

Finally we find the flux for pseudoplastic fluid with n=.75: 

Q.75 =  3
𝑅.75

4
 

4

3
𝑟1

7

3   𝑐 1 − 𝑧 +  
1−𝑧3

3
  

4

31

0
𝑧𝑑𝑧 =  3

𝑅.75

4
 

4

3
𝑟1

7

3  c +

1343[12−4𝑐3+4153𝑐+1+29c+132(c24+𝑐9+172)]                                                                  

(49) 

Numerical example 1 

Utilizing the foregoing equations with the following data  

𝐸𝑢=5,𝑟1=.9(dimensionless) 𝑅𝑛=20 for n=1,2,1.5,.5,.75 while applying 

the foregoing formulations and derivations, we find with desired 

approximation :c=.4205 and the dimensionless seal leakages for the 

aforesaid values of n: 

Q1 = 2.7540 ,Q2 = 1.3681, Q1.5 = 1.962, Q.5=5.6206 andQ.75=3.6689 

 

and the dimensionless axial force L=.9051                                           (50) 

 

5. Discussion  
The expressions for the fluid velocity components and for 

the leakage derived in the foregoing analysis reveal that they increase 

(1) with the increase in thickness(h) of the film,(2) with the increase 

in inner radius of the seal ring,(3) with the increase in Reynold Ratio 

number(n), (4) with the decrease in Euler number(Eu) and (5) with 

the decrease in index number(n), while the other parameters are kept 

constant in each case. Case(5) is confirmed with the above numerical 

example. The variation of dimensionless leakage with the variation of 

index number of the fluid is more or less in agreement with the 

relevant results1 and as such reaffirms that the flux i.e. leakage is the 

least for dilatants fluids(n>1) and is the highest for pseudoplastic 

fluids(n<1).The non- dimensional fluid pressure steadily decreases 

from its value at the inlet to zero at the outlet of the seal, obeying, in 

consequence of (17.1) and (17),  equation(17.2).  

The term contributing the centrifugal force due to rotation 

of the seal plate, in the expressions for velocity components in r- and 

z- directions is the factor 
1+𝑧+𝑧2

3
, which can be regarded as negligibly 

small provided the value of c is sufficiently large compared to the 

maximum value of this factor ie c>>1.Since the value of c given by 

(17.1) increases with the decrease in Euler’s number Eu ,  with the 

desired accuracy the centrifugal force becomes very small for low 

values of Eu and therefore can be neglected. However, neglecting the 

centrifugal force the foregoing two fluid-velocity components can be 

given by integrals(24) and (20): 

𝑣𝑟0(𝑟 ,𝑧)=(cnRn )1/n  (1 − 𝑧)1/𝑛𝑑𝑧 =
1

𝑧
(cnRn )1/n 𝑛(1−𝑧)

𝑛+1
𝑛

𝑛+1
            (51) 

𝑣𝑧0=(cnrRn)1/n(1+n)( 1 − 𝑧)
2𝑛+1

𝑛
1

𝑟
(

1

𝑛+1
−

1

2𝑛+1
)  

 𝑣𝑧0   =(cnrRn )1/n  (1 − 𝑧)
2𝑛+1

𝑛
𝑛

𝑟(2𝑛+1)
                      (52) 

Similarly the leakage neglecting the centrifugal force can be obtained 

by use of integral (44): 

𝑄0 = (cnr1Rn)1/nr1  z(1 − z)1/n1

0
dz (by use of properties of definite 

integral)  

𝑄0 = (cnr1Rn)1/nr1  (1 − z)z1/n1

0
dz  

𝑄0 =
(cnr1Rn )1/n r1n2

 n+1  (2n+1)
                                                                      (53) 

and consequently the dimension leakages without ‘centrifugal force’ 

with reference to the preceding numerical example give 

(𝑄0)1 = 1.1340, (𝑄0)2=.9346, (𝑄0)1.5=1.0903, (𝑄0).5=1.0828, 

(𝑄0).75=1.1690                            (54) 

which reckon almost the same deviations from the values with 

inclusion of the centrifugal force as cited in earlier work1. 
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