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This paper deals with seal performance of a non-Newtonian power-law fluid. The
mechanism comprises a primary seal ring flexibly mounted on a support and a secondary seal
plate capable of rotating about a shaft. Solution to the seal performance is obtained unlike
earlier authors in closed form subject to a set of boundary conditions compatible with the
fluid motion and as such the leakage velocity- components have been determined analytically

for pseudo plastic fluids and dilatants. Finally numerical examples have been illustrated in
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case of some non-Newtonian fluids.

1. Introduction

The seal [1] consists of a fixed plate called primary seal in
form of a ring mounted on a support and a circular plate called
secondary seal placed parallel to hand over the seal ring as illustrated
in Figl.The secondary seal is capable of rotating about a shaft which
acts as a common axis for both the seals. The small passage/gap
between the primary and secondary seals is called film thickness. The
power-law fluid is allowed to enter the region between the secondary
seal (plate) and the annular part of the ring through the latter;
simultaneously the secondary seal is set to rotate about the shaft,
bringing about vigorous motion of the fluid in the seal region.
However, because of radial flow of the fluid there occurs from the seal
region a flux of the fluid called leakage. Needless to mention that the
main purpose of the seal is to minimize the leakage. Prawal Sinha[1]
and his coauthor mostly gave numerical solution to non-Newtonian
power-law fluid flow through the seal .In this paper is worked out an
analytical solution to the fluid flow effecting some minor changes in
the boundary conditions but without sacrifice of the physical
significance and generality.

2. Equations of motion for the seal

Let (v, vg,v,) be the components of the fluid
velocity inr, 8, z directions at (r, 6, z) point in cylindrical coordinates
with respect to the origin at the centre of the ring. Then the pressure
equation?is

d _ 0w,
dr_Bz+'Dr (1)
T =g 2)

0z
where p is the pressure, a function of the radial distance
I;T, T, are stresses and p the fluid density.
The equation of continuity is
=0 for0<r<n 3)

v,
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", =TV, =10, forr <r<mn 3.1
The shear stresses! for the power- law model*are
v, av,
T, =m|— "= 4
w=ml @
— | 20 jn—1 9%
T, =m| %2 1 2 ©)

where m and n are constants called consistency index and flow index
respectively for the fluid flow.

The boundary conditions?! are

vg =o0atz=0and vy =rw atz=h 6)
where h is the thickness of the film,

andw the constant angular velocity of the seal about the shaft.
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By use of equation (2), (5) and (6) sinha! and his coauthor obtained

Vg = % (7)
and using (7) and (4) in equation (2) they! obtained

d_p _ 92v, z?i n—1 prwzzz

o - Mol "+ [ (8)

Now unlike Sinha[1] and his coauthor in this paper an
attempt is made to look for closed- form solution to equation(8) and
(3) i.e. to find explicitly the pressure p and the velocity components,
v,, U, subject to the boundary conditions relevant to the seal
performance.

Analytical Solution in closed form

Since the radial velocity component
v, of the fluid is a function of bothr and z coordinates, we can have
the non-dimensional velocity component as

7 = R(Z(2) ©)
where
R(r) andZ(z) are respectively functions of r and z, putting which in (8)
and introducing non- dimensional coordinates

_r T - Z — U _ _p—P
F=— =L 7=2 =T =2 10
T ATy IS p Pip (10)
we get
LQ=L32W|E|H—1 + 772 (11)
E,d7 R, 072 ' 9z
= Pi—P) 1 Re mn wrayp_—1
where E, =wr —= = —= 12
u=0r2/ p 'Ry (Reg)? wth( . (12)

r 1, are the inner and outer radii of the ring so thatr, is the radius of
the plate while P, is the inlet pressure and P the ambient pressure;

-9 ;
= where Q is the flux and
h(@r2)p , h \po
Rep == 20 ()" (13)
— m_r% L n—1
Re - p mn ((Urz)
Employing (9) in (11) we after dropping the bar sign can get the
following equation
1 _1d R"(r)d%Z  dZ\ n—
7= :d—f=— Rn: 2 |Gt + 22 = —c(constant) (14
0< r < 1 (The bar sign is kept understood) so that
1d
E—uzd—f = —cr (15)
With the boundary conditions
p=p;=latr=r; and p=0 atr=1 (16)
Solution to (15) subject to (16) yields the pressure equation
_1. EE?r)
P=1-c P a7
2
where C_Euz(l——rlz) (171)
1-r2
so that p—l_r12
23
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To obtain equation (14) amenable to analytical solution, of
course, with fulfillment of some other boundary conditions we must

have

LA 18
Rn—r =C (constant ) ( )
which because of (9) gives

v, (v, 2)=(c1, 1) /" Z(2) (19)
forOSr <r z#0

and because of the equation of continuity suggesting the rate of flow

into the annular region equal to the flux,
v, (r,2)= %1 (canrl)l/"Z(z) forr, <r<mr=1,z#0 (20)

so that equation(14) leads to

d2z | .dz _
a2t = (c+27)

which in tandem with (19) subject to the boundary conditions
av,

B—Z’:O atz=1

v.=0 atz=1 (21)
z(1) =0

can be solved as

— —[ Acl-2) + ( )]1/" (22)
7= f [ {c(l—z)+( ]”"dz (23)

and as such in view ofrelatlons (9) and (18)

1
v, (r2)= Ryrn)o [, [fe(1 = 2) + (2 )}] dz (24)
Osr<nz+0
Now because of(19) equation (3) turns out to be

1+n

2 (e T LY (25)
Boundary conditions for velocity component v, (r,z) are

v,(r,1) =0 (26)
v,(r,0) = vlrl%I for 0sr<mr (27)
v,(r,0) =0 for 0<7r <7, (28)

which hold on integration of (25) by use of (23)

1+n

v,(r2) ==(cip )/ rw (E0) ) Z(D)dt (29)
(Integration by parts)
=—(C1r, Worw Sl thdt]

v,(r,z) ==—(nR, )1/" —“”f {c1—t)+1 }1/"(z -)dt z#0 (30)

Further equation (24) suggests the boundary conditions forv, (r,z) as

v, (r,0)=vor/™ for 0<r<mr (31
v,(r,0)=0 for 0 <7 <1, (32)
where vy= (Rnn)% fol [{c(l —z)+ ( s )}]; dz=0 (33)
e 22 -+ () -
In the light of (30).

3. Performance of a newtonian fluid
For a Newtonian fluid n=1 and then in view of equations (24) to (34)
the velocity components become

v, (r,2)= (Ry1) ([, [{c(l—z)+( )}] dz forre [0,1; ),z# 0
= R“r{(g + c) (1-2) 2

o (35)

Because of equation (20) one gets using (23)
v, (r,z)=" (R ) (f [{c(1 - z) + ( )}] dz,forz # 0,r€ [y ;] (36
r? 1-z
=¢’<Rn>[(c+g) (1-2)-c -1 (36)
v,(r0)==R,rG+7)  re[0,n] (37)
Using properties of definite integrals in (30), we get

v,(r,z)=2R, [fl {c(l —-z)+ (1723)}2(12 - Zf {c1-t)+ —}dt]
=2R [{M_c(l_z__}_z{( +C) (1_2)_

4

] (38)
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4

v,(0)=R,G+3)  for 0<r<rn, (39)
Equation(38) can be further simplified as

v,(r,2) =R, [(c+ %)(1 2y c(1 =), e 0

30]

4. Performance of non-newtonian fluid
For non-Newtonian fluid the velocity components v, (r,z) and v, (r,z) as
in (24) and (31) can be formulated by Binomial expansion in series as

v,(r,z)z((Rnrn)% (c ) f {1- EZ )} 0<z<1

Slince z< 1 ( ) i< considering ¢>>1 depending on (12) and (17.1)
c+:

we can replace z3 by z in the above integral for desired
approximation so that

(n 1) AAAAAA (%*erl)zpdz

1
v, (r2)=(Rym): (c 2 g -1y s .
1 o 2l 1) (**pﬂ)(l*z”*“
=(Ryrm)n (¢ ( ) Ly(=1r 1.2.34 e (p+1)
v, (r,z) is given by replacing r by
r; in (40).For p = 0, the first term of the summation is equal to 1.
Similarly in the light of relation (30),

(40)

) = e 3 gy A

1.2.3...p(p+1)(p+2)
wherep' =20+ —z2(p+2) +p +1
Butfor 0<r <,

1 1(1 1
1/ —ﬂ 1\a oo/ 1G1)- (G )+
v, (r,0) =(nRy)™" ( +3) Xy (-1” 123..p(p+1)(p+2)

For p=0, the first term ofthe summation is 1.Needless to mention that
p is an integer.

AXIAL FORCE AND LEAKAGE

The axial force!ieload capacity is re-determined in the context of the
present design:

L=nri(p; —p) + 21 f:lz(p — P)rdr

which in non-dimensional form in consequence of (10),(16) and (17)
is given by dropping m:

L=rf +2 f:l prdr = (12+1)/2 (43)
(Dropping the bar sign on the right; r, = 1, P = 0, L=L/m)

In consequence of(3.1),(10) and (24), the dimensionless flux ie,
leakage after dropping the bar sign is given by

Ovyy
zdz.
0z

(42)

1 1 . 1
Q=Lt. fg 71 Vg dz =Lte—>0r1vrlz|e —lim,o ff L&t

1 jihas 1 —z3 %
Q=(R,n)rr,” ) [{c(l —-z)+ (1 3 )}] zdz (44)
(r £r<1y);by use of (19).
Hence the leakage in case of Newtonian flow ie when n=1 is obtained

as

1 12\ 1
Qi=R,1{ [ [{c(l —-7z)+ (Tz)}] zdz
=R+ (45)
The continuity of fluid flow with the principle of conservation of mass
entails that the flux through the seal ie leakage equals the rate Q'at
which the fluid flows into the annular space through the ring. This
aspect is ratified as follows by use of equation (27),(34) and (44) in

non-dimensional form:
1 n+1

Q= " rv,(r, 0)dr —f v, rrrdr ==(R,n)wr," f [{c(l -z)+
1-2z331nzdz=Q

The dimensionless leakage Q15 for dilatant fluid with n=1.5 is given by

_( R, 5)*r 5/3( ) (f 1- (H;)}zdz Forz

< 1,expanding the integrand
binomially and neglecting the cube and other higher powers of

cz+e
ﬁ which are very small in this context,
s
3

Qus= GRis)?’r 5/3(c+§) Jyz[1 - 2E”_)+Qz(cz+ 2)?)dz

2(e+3)

24
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2 5 2
_(3 3 g( 1)5 1 20Be+) 1?1
- (2 R1~5) nict; [z 15B3c+1)  (3c+1)2 (4 '9'72)]

The dimensionless leakage for a pseudoplastic fluid(n<1), say, n=.5 is

(46)

R 1 1-23\)2 i .
Q% = 7'5)21"13 N {c(l —-z)+ ( 3Z )} zdz (Integrating by parts with

second form as [ zdz)

= (&) 7 {ea-a+ (D) ©+mza
= (&) G

The dimensionless leakage for a dilatant fluid, n=2,is obtained as

! _ o3\ 1/2
Q, = (ZRZ)l/er/2 f {c(l —-2z)+ <1 32 >} zdz
0

(47)

Neglecting cube and other powers

2

CZ+—

of —&<1forz<
(+3)

1 in the binomial expansion of the above integrand,we get

23 11
_ 1/2,.3/2 1\ (1 g _1eztz  5G-D 2332
Q2 = @Ry)"*r* (c+3) fy 21 -3 R (cz+2)?]dz

92, 1
1 1+

1
_ 1/2,.3/2 Nl__*% _1
(2Ry)*ny (C + 3) [z 2(3c+1) 8 (3c+1)?

Finally we find the flux for pseudoplastic fluid with n=.75:
4

47 : 47
Qrs = (322) [ e -2 + () 2dz = (3%2) i (c+
1343[12—4c3+4153c+1+29%c+132(c24+c9+172)]
(49
Numerical example 1
Utilizing the foregoing equations with the following data
E, =5,r1=.9(dimensionless) R,=20 for n=1,2,1.5,.5,.75 while applying
the foregoing formulations and derivations, we find with desired
approximation :c=.4205 and the dimensionless seal leakages for the

aforesaid values of n:
Q, = 2.7540,Q, = 1.3681,Q;5 = 1.962,Q5=5.6206 andQ ;5=3.6689

(48)

and the dimensionless axial force L=.9051 (50)
5. Discussion

The expressions for the fluid velocity components and for
the leakage derived in the foregoing analysis reveal that they increase
(1) with the increase in thickness(h) of the film,(2) with the increase
in inner radius of the seal ring,(3) with the increase in Reynold Ratio
number(n), (4) with the decrease in Euler number(E.) and (5) with
the decrease in index number(n), while the other parameters are kept
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constant in each case. Case(5) is confirmed with the above numerical
example. The variation of dimensionless leakage with the variation of
index number of the fluid is more or less in agreement with the
relevant results! and as such reaffirms that the flux i.e. leakage is the
least for dilatants fluids(n>1) and is the highest for pseudoplastic
fluids(n<1).The non- dimensional fluid pressure steadily decreases
from its value at the inlet to zero at the outlet of the seal, obeying, in
consequence of (17.1) and (17), equation(17.2).

The term contributing the centrifugal force due to rotation

of the seal plate, in the expressions for velocity components in r- and

2
z- directions is the factor HZ%, which can be regarded as negligibly

small provided the value of c is sufficiently large compared to the
maximum value of this factor ie c¢>>1.Since the value of c given by
(17.1) increases with the decrease in Euler’s number E. , with the
desired accuracy the centrifugal force becomes very small for low
values of Eyand therefore can be neglected. However, neglecting the
centrifugal force the foregoing two fluid-velocity components can be
given by integrals(24) and (20):

ntl
n(l-z) n

1
Vrogra=(nR)Y" [/ (1 = 2)!/"dz = (enR,)"/" == (51)
i/n 2+l g 1
Vzo=(enrRy) M (1+n)(1 = 2) v =y = 5y)
41
v,9 =(cnrR)VM (1 —2)n #ﬂ) (52)

Similarly the leakage neglecting the centrifugal force can be obtained
by use of integral (44):

Qo = (cnryR)Yr; fol z(1 — z)'/" dz (by use of properties of definite
integral)

Qo = (enryR)Y"ry [ (1~ )z dz

_ (enriRy)/"rin?

Q= (n+1) (2n+1) (53)

and consequently the dimension leakages without ‘centrifugal force’
with reference to the preceding numerical example give

(Qoy1 = 1.1340, (Qp)2=9346, (Qg)15=1.0903, (Qy)5=1.0828,
(Qoy75=1.1690 (54)

which reckon almost the same deviations from the values with
inclusion of the centrifugal force as cited in earlier work?.
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