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Velocity altitude range and path of an aircraft performing optimal turn:
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Werner Grimm and Markus Hans established two kinds of optimal turn rate viz.,
accelerating control and decelerating control for an aircraft to obtain a specified heading and
speed in a minimum time. Either of the two controls or both with transition of one control to
the other are required to use for this purpose. Unlike in the previous papers in the present
feature the velocity, range, altitude and interestingly curvilinear path acquired by the aircraft

in an arbitrary time in course of either optimal turning are determined in closed form. A
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change of the boundary condition to simplify the optimization technique is also suggested.
Finally a few numerical examples are cited.

1. Introduction
The differential equations! governing the flight of an
aircraft in the horizontal plane is
(T-D)/m=V =fo(V)-Cu2, y=u
With f, (V) = a0 -a1V2-(az/V?)
ao =T/m, a1= pSCpo/2m, az= 2kW2/(mps)

C = 2km/(ps), u, (V) = Jlo(V)/C M
x=Vcosy, y=Vsiny
with tanp=(Vu)/g, n=1/cosp =(W/CLgs)! )

D = gs(Cpo+KCi2)

where for the aircraft

Cpo = Zero-lift drag coefficient

C.= Lift coefficient

D =drag

g = gravitational acceleration

k = factor in the drag polar

m = aircraft mass

q = dynamic pressure

S = reference wing area

T = thrusts

u = turn rate x

u = steady - state turn rate

V =speed at time t

W = weight (= mg) of the aircraft

p= bank angle

p = air density

x= heading angle

The optimal control problem of Werner Grimm? and Markus Hans! is
that the aircraft is to perform a specified heading change in minimum
time subject to given boundary values upon the speed

tr >Min

Subject to

x (0)=0, x(tr) = Ay, V(0) = Vo, V(t) =V: 3)

Where obviously 0< AX <1t — aright turnand AX>m—a
left turn. In their model'1the induced drag is neglected, i.e., a.= 0, in
model'2 obviously az# 0.

They obtained two types of optimal control for head turning
rate (x) opt = uy_ u¥+,/(u)? — {u, V)2 @
With costate u* = -(1/A*)>0

In previously published paper the value of this costate was
not determined explicitly. Using the optimal turn rate equation (4) and
the differential equation (1) of the acceleration is obtained [1]

Vi =F2Cua) (f @)? — (V¥ (5)
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The entire papar? is devoted to evaluating the given heading AX as a
function F(u*) of the costate u* resorting to cumbersome integrations
by use of equations (4),(5) and boundary conditions (3) taking into
account switch of one optimal control turning to the other.

Werner Grimm[1] and Markus Hans! refrained from
determining the velocity- time distribution, velocity- heading
distribution, distance traveled etc., in course of optimal turn. In the
present paper attempts have been made to deal with these aspects so
as to obtain complete analytical solution to the aircraft performance
with such controlled heading rate in conformity with boundary
conditions(3).

2. Optimal velocity - time distribution

In this section is solved equation (5) that has not been done
earlier?, subject to boundary conditions (3). From (1) we have
us?(V) = 1/C [ao —a1V2-az/V?] (6)

Which is used in (5); the dot sign denotes derivative with
respect to time t. Substituting (4) into (5) we get

V=200 (@) —u, (NP + J@)? - {u,(N} ] Q)
Further simplifying, rationalizing and using (6) one gets after
replacing u'by A for convenience suitable forms:
dv

MWAE-u2(V) £ (A2-u2(V))

Which mean either

2Cdt=+

dv (8
A -UuF(V) + (22-ul(V))

2Cdt=—

Or
av 9
MfAE-u2(V) - (22 -ul(V))
Respectively with decelerating and accelerating controls we
can integrate either of (8) and (9) with respect to t from o to trand V
from initial velocity Vo to final velocity Vr which occur during the same
optimal control of the heading turn. Thus let us integrate (8):

AUV - 2E U)o
2 2 2 2
A -afF i)
(-0 V) V)
2ty vl
where [; =

2Cdt =+

Ve av
Vo ag—a; sz%

(10)
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Vf av
Yo Jaaraytag—(Vav+Ly

v av
~(JaV - \/—)Z 2,[aa, +a,
Letusput z;— +/a; V+Ja, /V and z,. +a; V-y/a, /V

so that @, —[\/——\\//i—Z]dV andfdzz J{\/af\\//%jdv

(11)

_[ Izzm dz, 1
2 / 2,(0) %0 ¢,” -7}
Where ¢? +ayand, c? -aq so that c2-z2_c%-7%
1 =2 far,, 4N 6 — g2 far,, Qo 1°21=C2"22
Hence
+1 c +2
7| G 2 T4
1 2\/—[ g 202 C -z, ]0

Lo g{(w( ))(q zl(O))}+ 1 ,Og[(cz+z2(f))<c2—zz(0))} (12)
4J_cl (c-z(D))(a+20)] ¢ "[(6-2(f)(c-2(0)

2

Where

(0 = V& vy +@J (0= Vo + 52,

22(0)= Va; Vy — and z(f) = \/_Vf - —) (13)
dv which with the help

V'
|2=j
\Y

" (a,—aV?

of the same technique as earlier can be reduced to the form:

~JO(WC—a, +ay’ + ()"

- 1 [Izlm dz, +Iz2<r> dz,
‘ Zﬁ a© (C127212)\/C32+Z12 = (C227222)JC42+222
_ 1
= (it f2) as
Where ¢Z=22C —ay—2\a;a; , c2= A*C —ay+ 2y/a;a, (15)
Obviously
_ a0 dz, =J.Zl(f) dz,
2 2 2 2
4(0) (C]. -7 )\/C3 +2 7(0) . C12 C32
Z (7_1) 2
Zl Zl
c, 2
Letusput_+]_ 32 so that — 3 dz, = 2s,ds,
Z1 Z1
Then
f __I%(f) ds, 1 J-slm ds,
B e o B LI
- 1 Iog Sl(f)—Cs 51(0)+C5 (16)
2¢%c, s,(f)+c; ) s(0)—c,
fo_ 1 log s,(f)—cs ) S,(0)+cq
’ 2C12C'6 S, ( f ) + Ce S, (O) - Ce
Where
ety ¢’ +c 2
Sd=s?(i=12); ¢ l=2 B, .2 _C tC (17)
z{ 5 2 C6
C, C,

Ultimately the time taken for such travel with optimal
turning rate is given by the equations from (4) to (16) in terms of
initial and final velocities.

- = | = CI+Z() cl Z() 1 Cz+zz(f) 02722(0)
ARy { g{[q z(f)][cﬁzl(m} g{[fzz(f)][cﬁzz(om

s1(f)—cs 51(0)+cs 1 s2(f)—ce s2(f)+ce
MR o s ooy e o wwstporro |

(2]

€1Ce
along with

s1()—

2

20 Y On 2<f) H
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(18)

51 (0)=— (=

(0) (ﬁ

Whereas z, (O) and z, (f)are in terms of V0 amclVf (i=1,

2) respectively as per relation (7).

3. Optimal velocity turn distribution
Combining first part of (1) with (4) and (5) followed by

replacement of U by A we get a differential equation involving turn y
and velocity V which can be solved in closed form subject to boundary
conditions (3):
dy _u _ av

v v A2—CVu?
Z\Ed}{ - av

Clz—ag+a1Vz+%%—
vdv
2JCady = —
2,
HVZM C—aoj +{a _[/1 C-a, J H
23, 28,

Vf2+C7+

(by use of (6))

(19)

Or

V +C (20)

4/Ca, 7, =log

ﬂzc_a()’ 4a2a12_(lzc_a0)2

23,

and C, =V, +C, +JV +C

From (20) V, can be explicitly determined:

(21)

C_

7=

2
V2 +C,+4[(Vi? +C;) +Cy =Coe™Ven
2
_(sz + C7)2 +{(Vf2 ""Cs) +C}=GC
Dividing the second by the first one of (22) we have

-(V2+C,)+ (Vf2+C7)2+C8 _C

—4,/Cay
8 Cge ¥4
G

(22)

(23)

Subtracting (23) from (22) and simplifying one gets the velocity and
optimal turn distribution, in other words velocity turn distribution
with optimal turn rate as

sz {C oGz 08674 cam}_C7 (24)
2C,

4. Velocity- horizontal distance during optimal turn
Employing (9.1) in the first and second of (2) and in
consequence of (20) we obtain

o _V 1 /e

Ve avi-Br @-avi-o(c-a, vy i+ 0"
o Iogv2+c7+ (Vi+c,) +c, (25)

G,
dy_vi_ 1 e
a a

Ve ayi-2 (a-avi-Jn@c g ray i+ )"
w0s]— 1 IogV2+C7Jr (V2+Cv)2+ce (26)

4,[Ca, C,
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Which can be integrated in closed form by some
approximate process or in numerical method with given initial and
final conditions.

5. Horizontal distance and optimal turn distribution
Dividing the first and second of (2) by the first of (1) and
thereafter eliminating V by use of (4), (24) and the last of (1), we get

dx _Vcosy _ Vcosy (,1:“*)
a, : (27)
U axfa-u V)
In view of relationships (19) to (24) itis clear that
CAV?—(aV?—aV* -a ):ai{(V2+C ) +C }
2 7 8
V2_aVi_a =& a4 {C 2% Cal+C 26 Cal;(}
—Ca {02 eCar _c gt Caﬂ}—c
2C, 8 7
because of (24), which
(29)

V2o {CZ AJCTZ C24Caz} c
2C, !
Substituting (28) and (29) into (27) we have the right hand

side of (27) as a function of turn y i.e.,

o F(x)cos y (30)
dy

and

Y _E(y)sin g (1)
dy

Which can be numerically integrated using the initial and
final conditions to obtain horizontal distances (xy) described
reckoning turn y during the optimal turning i. e., to acquire a head in
minimum time.

6. Optimal curvileaner path and velocity distribution
If S be the distance traveled by the aircraft along the
optimal path at time t, by use of (9.1) we get

ds ds o
=V, vV=—V so that

av
ds=

14 1
==
2|ap—a1V v

1/2
A 540—:21 v2-azvz2 A o-al0+alV2+a2V2 ! ar
(32)
Hence in the light of the foregoing analysis the continuous

optimal curved distance

Se-k; — AW Ck, 33)
Where k1:1 Vi var ,k ffV’ var
2o ao—alvl—%zZ 272 2

(ag—a1 vz—l%)(aomlvh%)

2
with A C-ag=a, puttinglV’? = w resulting in change of the
limits,/wyand,/w,of integrationk,becomes

fr w dw fJ_ w dw
4-0.1 \/_ao —w2— az 4-0.1 Jwo (2) o 2
dar(vzar)

2
a ag az ao
Puttin; £ = —(xand — =
8 4a% aq 2aq

\/7 w dw fr[ﬂt(w-%-l?) —B (a—w)ldw

fea= 4a1fJ_(a —WWwHB) 4a1 Jwo (@B @-w)(w+p)
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(Performing optimal control) =4a1(1 [—alog(a —w) — Blog(w + B)]

+8)

«
here a+B=2 |45, — 22 2
where a+[= el Wozvu.Wf:v;

) (alv +a2(712))7a2d( )

4a VO (ao—alvz—ﬁ)\j(agwhw)

K2:

v av
2a, [

Yo V3(ag—alvz—%)\/(ag+a1vz+%)

4a1[ J-0 z(a+a0—z)1/2 +

:471 (a1 + 2a,45)
where

4V ,(putting * = a + a, — 2)

"o zarag-01/2

( \
Z . I,/a+ao+Z f Ja+ao— Z f
-Zf = log .
+ —Z2 Ja+
0 e e Jatag— Z f Jatap+ Z f
where 7, =a + a V2 + %,(i=0,f)
q._ Vs 2dV
2=
b 1/2

V3(ao—a1Vz—%%—)(a+a1Vz+%%—)

(7 av R
1/2 2V2(a+a1V?)
V(agVZ-aV*—ay)(a+a V?2)

This is due to az being a small factor contributing to the
induced drag such that 2 & (a+a,v?)and on binomial expansion

the squares and other hlgher power the small terms are neglected.

Puttinga + a;V2 =X2 V2 =22 weget
X dx X 2 _ XP-a o
a=Jy/ — o) vi==— (=0f)
a1 (X2-a) < %7%) (VZ zaaol)

_1 fxf dx

aq Y X
! 0(2_) ’”(2) az_ag _a X2 ’ﬂ% az ag  a X2
xo-a JHa1 ar 2ar ar g )| Jfar a1 201 ar ag

2
(putting ——alaz-——a——b , %—alaz+%+a=c

4 fx0 (Xz—a)(xz—b)(c—xz

=a1[ 1 J-X/ dax 1 J.Xf dax
la=b)(c—a) X9 X2-a N a)(c—b)

N X VA 3y +E EB\ (x4 lF 1 VERX £\ vE-%g)|ay
ia—b)-;c—a)uﬁl"g(xfﬂﬁjLu—\-aj+ (—a)( H:)»a 8l 7] (xu »a] Te—de—pye o8 Vexr, (\-Eu:.,] z
so that

, , , ,
q, =As; +Bs; +Cs3

X; dx ]
XoX2=5 (o a)(c b) Xoc
2z

where X;_a + a, V3 (i=0,f)
= [ v 3/2
= JI./L- V3(aoV? —a;V* —a;)(a+a;V?) /

(Simplifying on the above lines)

_(Xf dx
X (X2-a)2(X2-b)(c-X2)x?2

_[Fr B c D ix
- fxi [(x2 S EANG s R TS R e ) XZ]

=i( Y _ X )+(B
2a \X{—a Xf—a
where
,_a1 1 ,_a1 1
2 (a—b)(c—a)Va’ 2 (b—a)(c—a)Vb
o=4 1 -1 (xf—ﬁ x0+ﬁ)
2 c—b)(e—b)e’ §1 =108 Xp+a " Xo—a

A 1
—24)s +Cs, +Ds3+E(X—i—;)

(34)

X¢—Vb x0+\/_)

_ Ve+Xp  Je—Xg
52 = log (xfﬂf Xo—Vb, IOg( )

Ve=Xg "Ve+Xo
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1 1 1 1
a(a—b)(c—a) (c—a)2(c—b)c _ (b—a)2(c—b)b ' abc
1 1 _1
B)2c—bb’ " (c-a2(c—bye’  albc
In the binomial expansion evolved in the above integral q,
for the sake of higher accuracy if we require to include the square and

R
, D

c

higher power of the small term we shall encounter therein an

1
(a+a v2)
¢
Xi (x2 a)

integral of the typel, = n which can be avalualed by

reduction process as

! - - = —(@2n-3),,

)

n 2(n-1)a

(35)
2_ n-=
(x%-a)

7. Discussion And Conclusion

In practice the entire optimal trajectorylcorresponds to
either one of the control type u.and u- called single phase extremal or
a composite structure of both types called two phase extremal
depending on initial velocity V,, and final velocity V;. In a single
phaselextremal one of the two control types is exerted in attaining
final velocity V; starting with initial velocity V;, which is in this design
restricted with some new insights.

Equation[11] in Referencel given the optimal control us, u_
in terms of the instantaneous velocity V. Now using (7) and [11]/[4],
ie,eliminating u;(V) we can get the optimal control, ie, optimal turn
rate in terms of the longitudinal acceleration as

Ve =F20(u+) {i (“i - ’1)} :

V=20{ul — (u) A}
Or

ui=§</1 + //12—29

The unknown constant /1(=u*) can be found out in a

A =u,

(36)

simple manner unlike in Ref1 by suitably choosing the initial condition
(3), i.e. taking y=uo at t=0 then (4) given on simplification

A = [“0+“s(V0)] 37)
and the procedure for finding the optimal control to
perform a specified head change A ¥ remains the same but subject to
the initial and boundary conditions;
X (0)=0, ¥ (t) =4 ) ,v(0)=vo, ¥ (0)=uo
But unlike refl herein the final velocity V; is not specified
for (t)min, Obviously then because of (36) optimal turn rate in
consequence of (4) becomes

ud+u?(Vo) uf+ul(Vp)\ 2
wy = M () S () o)
dug _ 1+ Z d /1 _ Uy (1 _ us(;’o)) =0
dug dug up

P P
Jﬂ, —u¢ (Vo) Jﬂv (V)

when uo=us(vo)  and also
d*uy  duy 1 L u2(Vp)
duj "~ duo 2 ug (Vo)
A —u(Vo)
< u§(V0)> d 1
ull-—— -—
ug (Vo) / duyg 2
A —u?
ZuS (V0 Zuus Vo)

\I —u¢(w) udy A —u2(v)
>0 foruy = us,(Vy)

which implies that u,exhibits minimum when the initial
head turn rate u, is equal u,(Vy)and is given by
(upmin = u, (Vo) + JuZ (Vo) —u (V) (39)
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and the corresponding longitudinal acceleration in view of (7) turns
out to be
V, = 22C(u)minyuZ (V) — ui2(V)

(40)

Again this minimum head turn rate can be further
minimized in the same way with respect to the initial velocity vo, i.e. by
minimizing uo=us(Vo). Recalling (1), us(Vo) has a minimum when

4|a
Vo= [3:

(41)
us(Vo)min=a0-2v/a; a,

(42)

Figure2: Fighter plane in climbing flight, yet to perform a turn.

Hence employing (42) in (39) we have

(W)mine=ay — 2v/ayaz + +/(ao — 2v/ayaz)2—uz(V)

and can find the corresponding longitudinal acceleration. In order to
cite numerical examples we consider the following data.

Initial turning rate (¥)o =uo= 0.05

Initial velocity= Vo= 400 m/second

Velocity at a certain time during optimal control of turn =V
=500m/second

g=10N/sec?, k=.072,W=16,0000 N

m=16000 kg,

p=1.225 kg/m3
Numerical example 1
Herein are computed in the light of the forgoing analysis
stationary turn rate and the value of co-state A (on account of modified
initial conditions)
=TI =329 _ 20 m/sec? (1N=100GS)

ay=—=
P SCpVE  1.225 x 42 x .02 x (400)2

m 16000
om 2 % 1600

a,  2kw?  2x.072x(160000)* — 8
72 m P sVE 716000 x 1.225 x 42 x ((400)2) ~°

2k 2x0.072%(16000) 1 —
c=2m. 4,— =23%x107*
p s 1.225x42

S=42 m?, T=32,000N

=5.15

oV =
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so that the stationary turn rate u,(V,) with initial velocity V; :
w2 (V) =2 (ap — Vg — 2)=.0034

v¢
Or, u, (V) = .058
The value of co-state is

1 uz(V, 1
A =2(u+ s Vo) ==(0.5+ 0.0034 x 20) = 0.06
2 Uy 2

Numerical Example 2
The stationary turn rate with velocity V; = 500m/sec is:

a
(‘10 —a Vi - V_lzz)

c
Optimal control turn rate with this velocity is

2
w() = A+ A —u2()=.06+/(06) —.0027

=0.06+v0.0009 =.06+.03 = .09 or 0.03

w2 (V) = = (20-8.2) X 2.3 x 10~ =.0027
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Numerical Example 3
The acceleration due to the optimal turn rate with initial velocity Vo=

400 m/Sec or 500m/Sec is given by
2
Vi=F2Cu+ (V). A —u2(Vy)

=F2x % x L x[(06)2 — 0.0034 =+6.1 m/Sec?

Or

V, =F2x % X % X %z¢23.5 metre/sec?
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