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1. Introduction 
The differential equations1 governing the flight of an 

aircraft in the horizontal plane is 

(T-D)/m =  𝑉   = f0(V)- Cu2,     𝜒 = u  

With 𝑓0 (V) = a0 –a1V2-(a2/V2) 

a0 = T/m, a1= ρSCDO/2m, a2= 2kW2/(mρs) 

C = 2km/(ρs),                    u V   fo V / C  s 
                                        

(1)          

𝑥 = Vcos χ,       𝑦 = Vsin χ 

with   tanµ = (Vu)/g,    n= 1/cosµ  = ( W/CLqs)-1                                     (2) 

D = qs(CDO+KCL
2) 

where for the aircraft 

CDO = Zero-lift drag coefficient 

CL= Lift coefficient 

D = drag 

g = gravitational acceleration 

k = factor in the drag polar                                                                                                                   

m = aircraft mass 

q = dynamic pressure 

S = reference wing area 

T = thrusts 

u = turn rate 𝑥  

𝑢𝑠  = steady – state turn rate 

V = speed at time t 

W = weight (= mg) of the aircraft 

µ= bank angle 

𝜌 = air density 

χ= heading angle 

The optimal control problem of Werner Grimm1 and Markus Hans1 is 

that the aircraft is to perform a specified heading change in minimum 

time subject to given boundary values upon the speed 

tf →Min 

Subject to 

χ (0)= 0, χ(tf ) = Δχ, V(0) = V0 ,   V(tf) = Vf                                                (3) 

Where obviously 0< ΔX < π → a right turn and ΔX > π → a 

left turn. In their model11the induced drag is neglected, i.e., a2= 0, in 

modell2 obviously a2≠ 0. 

They obtained two types of optimal control for head turning 

rate (χ)  𝑜𝑝𝑡 = 𝑢±= u*± (𝑢∗)2 − {𝑢𝑠𝑉}2

                                                 (4)             
 

With costate u* = -(1/λ*)>0 

In previously published paper the value of this costate was 

not determined explicitly. Using the optimal turn rate equation (4) and 

the differential equation (1) of the acceleration is obtained [1] 

   
 𝑉±

  =∓2𝐶 𝑢∓ ( (𝑢∗)2 − {𝑢𝑠𝑉}2                                                              (5)                             

The entire papar1 is devoted to evaluating the given heading ∆X as a 

function F(u*) of the costate u* resorting to cumbersome integrations 

by use of equations (4),(5) and boundary conditions (3) taking into 

account switch of one optimal control turning to the other. 

Werner Grimm[1] and Markus Hans1 refrained from 

determining the velocity- time distribution, velocity- heading 

distribution, distance traveled etc., in course of optimal turn. In the 

present paper attempts have been made to deal with these aspects so 

as to obtain complete analytical solution to the aircraft performance 

with such controlled heading rate in conformity with boundary 

conditions(3). 

 

2. Optimal velocity – time distribution 
In this section is solved equation (5) that has not been done 

earlier1, subject to boundary conditions (3). From (1) we have 

us2(V) =  1/C [a0 –a1V2-a2/V2]                                                                        (6) 

Which is used in (5); the dot sign denotes derivative with 

respect to time t. Substituting (4) into (5) we get  

      𝑉 = ∓2𝐶[𝑢∗  (𝑢∗)2 − 𝑢𝑠(𝑉)}2  ±   (𝑢∗)2 − {𝑢𝑠(𝑉)}2 ]                  (7) 

Further simplifying, rationalizing and using (6) one gets after 

replacing  u*by λ for convenience suitable forms:      

    2 2 2 2

s s

 dV
2Cdt  

u V   u V  


  


 

Which mean either 

    2 2 2 2

s s

 dV
 2Cdt  

u V  + u V  
 

 

                                                 (8) 

Or 

    
    2 2 2 2

s s

 dV
2Cdt  

u V  - u V  
 

 

                                          (9) 

Respectively with decelerating and accelerating controls we 

can integrate either of (8) and (9) with respect to t from o to tf and V 

from initial velocity V0 to final velocity Vf which occur during the same 

optimal control of the heading turn. Thus let us integrate (8): 
2 2 2 2

2 2 2 2 2 2

( ( )) ( )
2

( ( )) ( ( ))

s s

s s

u V u V
Cdt dV

u V u V

  

  

  
 

   or     

         

2 2 2 2

2 2 2

( ) ( )

( ( )) ( )

s s

s s

u V u V
dV

u V u V

  



  




                

2𝑡𝑓=𝐼1−𝜆 C𝐼2
 

where  𝐼1 =     
𝑑𝑉

𝑎0−𝑎1𝑉2−
𝑎2
𝑉2

𝑉𝑓

𝑉0
                                                                          (10) 
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=  
𝑑𝑉

 4𝑎1𝑎2+𝑎0−( 𝑎1𝑉+
 𝑎2

𝑉
)2

                 
𝑉𝑓

𝑉0

22

1 1 2 0( ) 2

f

o

V

V

dV

a
a V a a a

V



   



    

 

Let us put   z1=     𝑎1 V+ 𝑎2 /V    and       z2=     𝑎1 V- 𝑎2 /V            (11) 

so that 
2

1 1 2

a
dz a dV

V

 
  
 
 

and 
2

2 1 2

a
dz a dV

V

 
  
 
 

 

1 2

1 2

( ) ( )
1 2

1 2 2 2 2(0) (0)
1 1 2 21

1
[ ]

2

z f z f

z z

dz dz
I

c z c za
 

  
 

Where  𝑐1  =  2 𝑎1𝑎2

2  +𝑎0and, 𝑐2  = 𝑎0− 2 𝑎1𝑎2

2  -𝑎0  𝑠𝑜 𝑡ℎ𝑎𝑡    𝑐1
2-𝑧1=

2 𝑐2
2-𝑧2

2  

Hence 

1 1 2 2
1 0

1 1 1 2 2 21

1 1 1
[ log log ]
2 22

fc z c z
I

c c z c c za

 
 

 

 

 

 

 

 

 

 

 

 
1 1 1 1 2 2 2 2

1

1 1 1 1 1 2 2 2 2 21

( ) (0) ( ) (0)1 1 1
[ log log

( ) (0) ( ) (0)4

c z f c z c z f c z
I

c c z f c z c c z f c za

       
    

       

      (12) 

 Where 

  z1(f) =  𝑎1 𝑉𝑓 +  𝑎2

𝑉𝑓
)  , z1(0)= 𝑎1 𝑉0 +  𝑎2

𝑉0
  , 

 z2(0)=   𝑎1 𝑉0 −  𝑎2

𝑉0
  and  z2(f) =  𝑎1 𝑉𝑓 −  𝑎2

𝑉𝑓
)                                     (13) 

                                            

0
2 1

2 2 22 2 2
1 12 2

( )( )

fV

V

o o

dV
I

a a
a aV C a aV

V V




    


  

which with the help 

of the same technique as earlier can be reduced to the form:  

1 2

1 2

( ) ( )
1 2

2
2 2 2 2 2 2 2 2(0) (0)

1 1 1 3 1 2 2 4 2

1
[ ]

2 ( ) ( )

z f z f

z z

dz dz
I

a c z c z c z c z
 

   
 

 

=
1

2 𝑎1   
(𝑓1 + 𝑓2 )                                                                                              (14) 

Where     𝑐3
2 = 𝜆2𝐶 − 𝑎0 − 2 𝑎1𝑎2   ,   𝑐4

2 =   𝜆2𝐶 − 𝑎0 + 2 𝑎1𝑎2       (15) 

Obviously 

1

1

( )
1

1
2 2 2 2(0)

1 1 3 1( )

z f

z

dz
f

c z c z


 


      = 
1

1

( )
1

22(0)
3 31

1 2 2

1 1

( 1) 1

z f

z

dz

cc
z

z z
 


 

Let us put 
2

23
12

1

1
c

s
z

   so that 
2

3
1 1 13

1

2
2

c
dz s ds

z


  

Then  

1

1

( )
1

1 2 2 2 2(0)
1 1 1 3( )

s f

s

ds
f

c s c c
 

 
1

1

( )
1

2 2 2(0)
1 1 5

1 s f

s

ds

c s c
 


 

1 5 1 5

2

1 5 1 5 1 5

( ) (0)1
log

2 ( ) (0)

s f c s c

c c s f c s c

     
     

     

                                         (16) 

2 6 2 6
2 2

1 6 2 6 2 6

( ) (0)1
log

2 ( ) (0)

s f c s c
f

c c s f c s c

     
     

     

 

Where 

    
𝑐3+𝑖

2

𝑧𝑖
2 = 𝑠𝑖

2  (i=1,2);  
2 2

2 1 3
5 2

1

c c
c

c


 , 

2 2
2 2 4

6 2

2

c c
c

c


               (17) 

Ultimately the time taken for such travel with optimal 

turning rate is given by the equations from (4) to (16) in terms of 

initial and final velocities. 

1 1 1 1 2 2 2 2
0

1 1 1 1 1 2 2 2 2 21

( ) (0) ( ) (0)1 1 1
( , ) log log

( ) (0) ( ) (0)8
f f

c z f c z c z f c z
t F V V

c c z f c z c c z f c za

               
           

                

 

+ 𝑐 λ[
1

c1
2c5

log{
𝑠1 𝑓 −𝑐5

𝑠1 𝑓 +𝑐5
.
𝑠1 0 +𝑐5

𝑠1 0 −𝑐5
} +

1

𝑐1
2𝑐6

log{
𝑠2 𝑓 −𝑐6

𝑠2 𝑓 +𝑐6
.
𝑠2 𝑓 +𝑐6

𝑠2 𝑓 −𝑐6
}] 

along with 
2

2 3
1 2

1

(0) 1,
(0)

c
s

z
 

2
2 3

1 2

1

( ) 1
( )

c
s f

z f
 

 

                              (18) 

 

Whereas (0)iz and ( )iz f are in terms of 
0V and

fV  (i =1, 

2) respectively as per relation (7). 

 

3. Optimal velocity turn distribution 
Combining first part of (1) with (4) and (5) followed by 

replacement of 
*u  by λ we get a differential equation involving turn 𝜒 

and velocity V which can be solved in closed form subject to boundary 

conditions (3): 

 
𝑑𝜒

𝑑𝑉 
=

𝑢

𝑉 
=

𝑑𝑉

 𝜆2−𝐶𝑉𝑢𝑠
2
           (by use of (6)) 

      2 𝐶 d𝜒    =
𝑑𝑉  

 𝐶𝜆2−𝑎0+𝑎1𝑉
2+

𝑎2
𝑣2

                                                                  (19) 

1 1
22 2

2 2
2 0 0

2

1 1

2

2 2

VdV
Ca d

C a C a
V a

a a



 


       
       
       

 

Or  

 
2

2 2

7 7 8

1

9

4 log
f f

f

V C V C C
Ca

C


 
    

  
  

                        (20) 

2

0
7

12

C a
C

a

 
 ,  

2
2 2

2 1 0

2

1

4

4
s

a a C a
C

a

 


                                       (21) 

and  
2

2 2

9 0 7 0 7 8C V C V C C      

From (20)
fV can be explicitly determined:  

  1
2 42 2

7 7 8 9
fCa

f fV C V C C C e


      

 
2

2 2 2

7 8 8 8( ) { }f fV C V C C C                                          (22) 

Dividing the second by the first one of (22) we have  

  1
2 42 2 8

7 7 8 9

9

( ) fCa

f f

C
V C V C C C e

C


     

                                                     

 

(23) 

Subtracting (23) from (22) and simplifying one gets the velocity and 

optimal turn distribution, in other words velocity turn distribution 

with optimal turn rate as  

 1 14 42

9 8 7

9

1

2

f fCa Ca

fV C e C e C
C

 
  

                                   

 (24) 

 

4. Velocity- horizontal distance during optimal turn 
Employing (9.1) in the first and second of (2) and in 

consequence of (20) we obtain  

1
2 2 2 22 2 2 2

0 1 0 1 0 12 2 2

1

2
( )( )

dx V C

a a adV
a aV a aV C a aV

V V V





 
 

  
       
 

 

 
2

2 2

7 7 8

91

1
cos log

4

V C V C C

CCa

 
    

  
 
 

                                 (25) 

1
2 2 2 22 2 2 2

0 1 0 1 0 12 2 2

1

2
( )( )

dy V C

a a adV
a aV a aV C a aV

V V V





 
 

  
       
 

 

 
2

2 2

7 7 8

91

1
cos log

4

V C V C C

CCa

 
    

  
 
 

                         (26) 
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Which can be integrated in closed form by some 

approximate process or in numerical method with given initial and 

final conditions. 

 

5. Horizontal distance and optimal turn distribution  
Dividing the first and second of (2) by the first of (1) and 

thereafter eliminating V by use of (4), (24) and the last of (1), we get  

2

cos cos

( )s

dx V V

d u u V

 

  

 
 

                     

 *u 
                   (27)

         

 

In view of relationships (19) to (24) it is clear that  

    
2

2 2 4 2

0 1 2 1 7 8C V a V aV a a V C C        

 

 

1 1

1 1

2
4 42 4 2 21

0 1 2 9 82

9

4 42

9 8 7

9

4

1

2

Ca Ca

Ca Ca

a
a V aV a C e C e

C

C C e C e C
C

 

 






   

 
   

 

               (28) 

because of (24), which

             

  
 1 14 42 2 2

9 8 7

9

1

2

Ca Ca
V C e C e C

C

 
  

                             

(29)             

 
Substituting (28) and (29) into (27) we have the right hand 

side of (27) as a function of turn 𝜒 i.e., 

( )cos
dx

F
d

 



                                                                               

 (30) 

and 

( )sin
dy

F
d

 

                                                                                 (31) 

Which can be numerically integrated using the initial and 

final conditions to obtain horizontal distances (x,y) described 

reckoning turn 𝜒  during the optimal turning  i. e., to acquire a head in 

minimum time. 

 

6. Optimal curvileaner path and velocity distribution 
If S be the distance traveled by the aircraft along the 

optimal path at time t, by use of (9.1) we get 

 
𝑑𝑠
𝑑𝑡=v,  v=

𝑑𝑠

𝑑𝑉
 𝑉       so   that  

 dS= 

𝑉

2

 
 
 
 
 
 

1

𝑎0−𝑎1𝑉2  −
𝑎2
𝑉2

−

𝜆𝐶𝑎0−𝑎1𝑉2−𝑎2𝑉2  2𝑐−𝑎0+𝑎1𝑉2+𝑎2𝑉2
2/1
𝑑𝑉                                             

(32) 

Hence in the light of the foregoing analysis the continuous 

optimal curved distance  

Sf= 𝑘1 − 𝜆 𝐶𝑘1
                                                                                                                                                        (33)

 

Where 𝑘
1=1

2  
𝑉 𝑑𝑉

𝑎0−𝑎1𝑉2−
𝑎2
𝑉2

𝑉𝑓
𝑉0

,𝑘
2=

1

2
 

𝑉 𝑑𝑉

 𝑎0−𝑎1𝑉2−
𝑎2
𝑉2  𝑎0+𝑎1𝑉2+

𝑎2
𝑉2 

2/1

𝑉𝑓
𝑉02

 

 

With
2

C-𝑎0=𝑎1putting𝑉2 = 𝑤 resulting in change of the 

limits 𝑤0and 𝑤𝑓of integration𝑘1becomes 

𝑘1=
1

4𝑎1
 

𝑤 𝑑𝑤
𝑎0
𝑎1

𝑤−𝑤2−
𝑎2
𝑎1

=
1

4𝑎1
 

𝑤 𝑑𝑤

𝑎0
2

4𝑎1
2− 𝑤−

𝑎0
2𝑎1

 
2

 𝑤𝑓

 𝑤0

 𝑤𝑓

 𝑤0

 

Putting  
𝑎0

2

4𝑎1
2 −

𝑎2

𝑎1
 +

𝑎0

2𝑎1
= α  and  

𝑎0
2

4𝑎1
2 −

𝑎2

𝑎1
−

𝑎0

2𝑎1
= 𝛽 

𝑘1=
1

4𝑎1
 

𝑤 𝑑𝑤

  α−w   𝑤+𝛽 
=

1

4𝑎1
 

 𝛼 𝑤+𝛽 −𝛽 𝛼−𝑤  𝑑𝑤

 𝛼+𝛽  𝛼−𝑤  𝑤+𝛽 

 𝑤𝑓

 𝑤0

 𝑤𝑓

 𝑤0

 

(Performing optimal control) =
1

4𝑎1 𝛼+𝛽 
 −𝛼 log 𝛼 − 𝑤 − 𝛽 log 𝑤 + 𝛽   

where α+β=2 
𝑎0

2

4𝑎1
2 −

𝑎2

𝑎1
 ,  𝑤0=V0

2 , 𝑤𝑓=𝑣𝑓
2  

𝐾 2 =
1

4𝑎1
 

𝑑 𝑎1𝑉
2+𝑎2 

1
𝑉2  −𝑎2𝑑 

1
𝑉2 

 𝑎0−𝑎1𝑉
2−

𝑎2
𝑉2   𝑎0+𝑉2+

𝑎2
𝑉2 

𝑉𝑓
𝑉0

 

 

=
1

4𝑎1
 − 

𝑑𝑧

𝑧 𝑎+𝑎0−𝑧 1/2

𝑧𝑓

𝑧0
+ 2𝑎2  

𝑑𝑉

𝑉3 𝑎0−𝑎1𝑉
2−

𝑎2
𝑉2   𝑎0+𝑎1𝑉

2+
𝑎2
𝑉2 

𝑉𝑓

𝑉0
  

=
1

4𝑎1
 𝑞1 + 2𝑎2𝑞2  

where 

𝑞
1=− 

𝑑𝑧

𝑧 𝑎+𝑎0−𝑧 1/2

𝑉𝑓
𝑉0

 ,( putting 𝑍
2 =  𝑎 + 𝑎0 − 𝑧) 

=2 
𝑑𝑍

𝑎+𝑎0−𝑍2 

fZ

0Z
 = 

1

 𝑎+𝑎0
log

 
 
 

 
 

 𝑎+𝑎0+𝑍
f

f

 𝑎+𝑎0− fZ
.
 𝑎+𝑎0− fZ

 𝑎+𝑎0+
fZ
 
 
 

 
 

 

where 𝑍𝑖 = 𝑎 + 𝑎1𝑉𝑖
2 +

𝑎2

𝑉𝑖
2 ,(i=0,f) 

𝑞
2= 

2𝑑𝑉

𝑉3 𝑎0−𝑎1𝑉2−
𝑎2
𝑉2  𝑎+𝑎1𝑉2+

𝑎2
𝑉2 

2/1

𝑉𝑓
𝑉𝑖

 

= 
𝑑𝑉

𝑉 𝑎0𝑉2−𝑎1V4−𝑎2  𝑎+𝑎1𝑉2 
2/1

𝑉𝑓

𝑉𝑖
 1 −

𝑎2

2𝑉2 𝑎+𝑎1𝑉2 
  

 

This is due to 𝑎2 being a small factor contributing to the 

induced drag such that 
𝑎2

𝑣2
≪ (𝑎 + 𝑎1𝑣

2 ) and on binomial expansion 

the squares and other higher power the small terms are neglected. 

Putting 𝑎 + 𝑎1𝑉
2 = 𝑋,2   𝑉2 =

𝑋2−𝑎

𝑎1
       we get 

𝑞2
′ =  

𝑑𝑋

𝑎1 𝑋2−𝑎    
𝑎0

2

4𝑎1
−

𝑎2
𝑎1

 
2

− 𝑉2−
𝑎0

2𝑎1
 

2
 

𝑋𝑓

𝑋0
;            𝑽𝒊

𝟐 =
𝑋𝑖

2−𝑎

𝑎1
      (i=0,f) 

      =
1

𝑎1
 

𝑑𝑋

 𝑥2−𝑎   
𝑎0

2

4𝑎1
−

𝑎2
𝑎1

−
𝑎0

2𝑎1
−

𝑎

𝑎1
+

𝑋2

𝑎1
   

𝑎0
2

4𝑎1
−

𝑎2
𝑎1

+
𝑎0

2𝑎1
+

𝑎

𝑎1
−

𝑋2

𝑎1
 

𝑋𝑓

𝑋0
 

(putting  
𝑎0

2

4
− 𝑎1𝑎2 - 

𝑎0

2
− 𝑎 = −𝑏  ,  

𝑎0
2

4
− 𝑎1𝑎2 +

𝑎0

2
+ 𝑎 = 𝑐   

=𝑎
1  

𝑑𝑥

 𝑋2−𝑎  𝑋2−𝑏  𝑐−𝑋2 

𝑋𝑓
𝑋0

 

=𝑎
1 

1

 𝑎−𝑏 (𝑐−𝑎)
 

𝑑𝑋

𝑋2−𝑎
+

1

 𝑏−𝑎 (𝑐−𝑏)
 

𝑑𝑋

𝑋2−𝑏
+

𝑋𝑓
𝑋0

𝑋𝑓
𝑋0

1

 𝑐−𝑎 (𝑐−𝑏)
 

𝑑𝑋

𝑐−𝑋2

𝑋𝑓
𝑋0

 
 

 
so that 

𝑞2
′  =𝐴′𝑠1 + 𝐵′𝑠2 + 𝐶 ′𝑠3 

where 𝑋𝑖=𝑎 + 𝑎1𝑉𝑖
2        (i=o,f) 

 

𝑞2
′′ =  

𝑑𝑉

𝑉3 𝑎0𝑉
2 − 𝑎1𝑉

4 − 𝑎1  𝑎 + 𝑎1𝑉
2 

3/2
𝑉𝑓

𝑉𝑖

 

(Simplifying on the above lines) 

 

= 
𝑑𝑋

 𝑋2−𝑎 2 𝑋2−𝑏  𝑐−𝑋2 𝑋2

𝑋𝑓

𝑋𝑖
 

 

=   
𝐴

 𝑋2 − 𝑎 2
+

𝐵

(𝑋2 − 𝑎)
+

𝐶

 𝑋2 − 𝑏 
+

𝐷

 𝑐 − 𝑋2 
+

𝐸

𝑋2
 

𝑋𝑓

𝑋𝑖

𝑑𝑋 

=
𝐴

2𝑎
 

𝑋𝑖

𝑋𝑖
2−𝑎

−
𝑋𝑓

𝑋𝑓
2−𝑎

 +  𝐵 −
𝐴

2𝑎
 𝑠1 + 𝐶𝑠 2 + 𝐷𝑠3 + 𝐸  

1

𝑋𝑖
−

1

𝑋𝑓
  

where 

 A’=
𝑎1

2

1

 𝑎−𝑏 (𝑐−𝑎) 𝑎
,B’=

𝑎1

2

1

 𝑏−𝑎 (𝑐−𝑎) 𝑏
 

C’=
𝑎1

2

1

 𝑐−𝑏 (𝑐−𝑏) 𝑐
;𝒔𝟏 = 𝐥𝐨𝐠  

𝑋𝑓− 𝑎

𝑋𝑓+ 𝑎
 .

𝑋0+ 𝑎

𝑋0− 𝑎
                                             (34) 

 

𝒔𝟐 = 𝐥𝐨𝐠  
X f− 𝑏

𝑋𝑓+ 𝑏
 .

𝑋0+ 𝑏

𝑋0− 𝑏
   ; 𝒔𝟑 = 𝐥𝐨𝐠  

 𝑐+𝑋𝑓

 𝑐−𝑋𝑓
 .

 𝑐−𝑋0

 𝑐+𝑋0
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A=
𝟏

𝒂 𝒂−𝒃 (𝒄−𝒂)
   , B=

𝟏

(𝒄−𝒂)𝟐 𝒄−𝒃 𝒄
−

𝟏

(𝒃−𝒂)𝟐 𝒄−𝒃 𝒃
+

𝟏

𝒂𝟐𝒃𝒄
 

C’=
𝟏

(𝒃−)𝟐 𝒄−𝒃 𝒃
 , D=

𝟏

(𝒄−𝒂)𝟐 𝒄−𝒃 𝒄
 ,    E=

𝟏

𝒂𝟐𝒃𝒄
 

In the binomial expansion evolved in the above integral 𝑞2  

for the sake of higher accuracy if we require to include the square and 

higher power of the small term  
1

 𝑎+𝑎1𝑉
2 

, we shall encounter therein an 

integral of the type 𝐼𝑛 =  
𝑑𝑋

 𝑋2−𝑎 
𝑛

𝑋𝑓

𝑋𝑖
  which can be avalualed by 

reduction process as 

𝐼𝑛 =
1

2 𝑛−1 𝑎
 

𝑋𝑖

 𝑋𝑖
2−𝑎 

1n
−

𝑋𝑓

 𝑋𝑖
2−𝑎 

1n
− (2𝑛 − 3)𝐼𝑛−1                            (35) 

 

7. Discussion And Conclusion 
In practice the entire optimal trajectory1corresponds to 

either one of the control type u+and u- called single phase  extremal or 

a composite structure of both types called two phase extremal 

depending on initial velocity 𝑉0  𝑎𝑛𝑑 𝑓𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Vf . In a single 

phase1extremal one of the two control types is exerted in attaining 

final velocity 𝑉𝑓  starting with initial velocity 𝑉0, which is in this design 

restricted with some new insights. 

Equation[11] in Reference1 given the optimal control u+, 𝑢− 

in terms of the instantaneous velocity V. Now using (7) and [11]/[4], 

ie,eliminating 𝑢𝑠(V) we can get the optimal control, ie,  optimal turn 

rate in terms of the longitudinal acceleration as 

𝑉 ± = ∓2𝐶 𝑢 ±  ± 𝑢± −    
 ,           

 = 𝑢∗ 

-𝑉 =2C{𝑢±
2 −  𝑢±  } 

 Or 

𝑢± =
1

2
  ±  

2
− 2

𝑉 

𝐶
                                                                      (36) 

The unknown constant  (=u*) can be found out in a 

simple manner unlike in Ref1 by suitably choosing the initial condition 

(3), i.e. taking 𝜒 =u0 at t=0 then (4) given on simplification 

 =  
𝑢0

2+𝑢𝑠
2 𝑉0 

2𝑢0
                                                                                           (37) 

 

and the procedure for finding the optimal control to 

perform a specified head change ∆   remains the same but subject to 

the initial and boundary conditions; 

 (0)=0,  (𝑡𝑓) = ∆  , v(0)=v0  ,  (0)=u0 

But unlike ref1 herein the final velocity 𝑉𝑓  is not specified 

for (tf)min, Obviously then because of (36) optimal turn rate in 

consequence of (4) becomes 

𝑢± =
𝑢0

2+𝑢𝑠
2 𝑉0 

2𝑢0
±   

𝑢0
2+𝑢𝑠

2 𝑉0 

2𝑢0
 

2
− 𝑢𝑠

2 𝑉                                   (38) 

𝑑𝑢±−

𝑑𝑢0
=

 

 1 ±


 
2

−𝑢0
2 𝑉0  

 
𝑑
𝑑𝑢0

=
𝑢±−

 
2

−𝑢𝑠
2 𝑉0 

 1 −
𝑢𝑠

2 𝑉0 

𝑢0
2  = 0  

when u0=us(v0)       and also 

𝑑2𝑢±

𝑑𝑢0
2 =

𝑑𝑢±

𝑑𝑢0

1

 
2

− 𝑢𝑠
2 𝑉0 

 1 −
𝑢𝑠

2 𝑉0 

𝑢0
2 𝑉0 

 

+ 𝑢  1 −
𝑢𝑠

2 𝑉0 

𝑢0
2 𝑉0 

 
𝑑

𝑑𝑢0

 

 
1

 
2

− 𝑢𝑠
2
 

 

+
𝑢

 
2

− 𝑢𝑠
2 𝑣0 

×
2𝑢𝑠

2 𝑉0 

𝑢0
3 =

2𝑢𝑢𝑠
2 𝑉0 

𝑢0
3 

2

− 𝑢𝑠
2 𝑉0 

> 0 𝑓𝑜𝑟 𝑢0 = 𝑢𝑠 𝑉0  

which implies that  𝑢±exhibits minimum when the initial 

head turn rate 𝑢0 is equal 𝑢𝑠 𝑉0 and is given by 

 𝑢± 𝑚𝑖𝑛 = 𝑢𝑠 𝑉0 ±  𝑢𝑠
2 𝑉0 − 𝑢𝑠

2 𝑉                                                                                     (39) 

and the corresponding longitudinal acceleration in view of (7) turns 

out to be  

𝑉 ± = ±2𝐶 𝑢± 𝑚𝑖𝑛 𝑢𝑠
2 𝑉0 − 𝑢𝑠

2 𝑉    

  (40) 

Again this minimum head turn rate can be further 

minimized in the same way with respect to the initial velocity v0, i.e. by 

minimizing u0=us(V0). Recalling (1), us(V0) has a minimum when 

Vo= 
𝑎2

𝑎1

4
      

 (41)              

us(V0)min=a0-2 𝑎1𝑎2                                                              (42) 

 

 Also see figure 1 and 2 

 
Figure1: Fighter aircrafts taking turns 

 

 
Figure2: Fighter plane in climbing flight, yet to perform a turn. 

 

Hence employing (42) in (39) we have 

(u+)min2=𝑎0 − 2 𝑎1𝑎2 ±   𝑎0 − 2 𝑎1𝑎2 2−𝑢𝑠
2 𝑉  

and can find the corresponding longitudinal acceleration. In order to 

cite numerical examples we consider the following data. 

Initial turning rate (𝜒 )0 =u0= 0.05 

Initial velocity= V0= 400 m/second 

Velocity at a certain time during optimal control of turn =V1 

=500m/second 

g=10N/sec 2 ,     k=.072, W=16,0000 N 

 m=16000 kg, S=42 m2, T=32,000N  

𝜌=1.225 kg/m3 

Numerical example 1 

Herein are computed in the light of the forgoing analysis 

stationary turn rate and the value of co-state λ (on account of modified 

initial conditions) 

𝑎0 =
𝑇

𝑚
=

320000

16000
= 20 𝑚/𝑠𝑒𝑐2    (1 N=100 GS) 

𝑎1𝑉0
2 =

 𝑆𝐶𝑜𝐷𝑉0
2

2𝑚
=

1.225 × 42 × .02 ×  400 2

2 × 1600
= 5.15 

𝑎2

𝑉0
2 =

2𝑘𝑤2

𝑚  𝑠𝑉0
2

=
2 × .072 × (160000)2

16000 × 1.225 × 42 ×  (400)2 
= .28 

C=
2𝑘𝑚

 𝑆
= 

2×0.072×(16000 )

1.225×42
; 

1

𝐶
= 2.3 × 10−4  
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so that the stationary turn rate 𝑢𝑠 𝑉0  with initial velocity 𝑉0 : 

𝑢𝑠
2 𝑉0 =

1

𝐶
 𝑎0 − 𝑎1𝑉0

2 −
𝑎2

𝑉0
2 =.0034 

Or, 𝑢𝑠 𝑉0 = .058 

The value of co-state is 

 =
1

2
 𝑢0 +

𝑢𝑠
2 𝑉0 

𝑢0

 =
1

2
 0.5 + 0.0034 × 20 = 0.06 

𝑵𝒖𝒎𝒆𝒓𝒊𝒄𝒂𝒍 𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟐 

The stationary turn rate with velocity 𝑉1 = 500𝑚/𝑠𝑒𝑐 is : 

𝑢𝑠
2 𝑉1 =

 𝑎0 − 𝑎1𝑉1
2 −

𝑎2

𝑉1
2 

𝐶
=  20 − 8.2 × 2.3 × 10−4 = .0027 

Optimal control turn rate with this velocity is 

𝑢± 𝑉1 =  ±  
2

− 𝑢𝑠
2 𝑉1  =.06± (.06)2 − .0027 

=0.06± 0.0009 =.06±.03 = .09 𝑜𝑟 0.03 

Numerical Example 3 

The acceleration due to the optimal turn rate with initial velocity V0= 

400 m/Sec or 500m/Sec is given by 

𝑉±
 =∓2𝐶𝑢 ±  𝑉0 . 

2

− 𝑢𝑠
2 𝑉0  

=∓2 ×
104

2.3
×

1

20
×   . 06 2 − 0.0034 =±6.1 𝑚/𝑆𝑒𝑐2 

Or 

𝑉 ± = ∓2 ×
104

2.3
×

9

100
×

3

100
=∓23.5 𝑚𝑒𝑡𝑟𝑒/𝑠𝑒𝑐2 
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