Plastral shape isometry in Western Hermann's tortoise (Testudo hermanni hermanni)
Abstract
Elliptical Fourier Analysis is a good technique for characterizing the shape of complex biological and non-biological morphologies. The current investigation aimed to study plastral pigmentation contour (black areas of the ventral shell) changes, according to body size (plastral length), in Western Hermann's tortoise (Testudo hermanni hermanni), using Elliptical Fourier Analysis. For this goal, 52 domestic pure tortoises from authorized private breeders were selected, ventral pictures were individually taken and their contour automatically digitized and straight-line plastron length obtained. Straight-line plastron length ranged from 83.6 to 150.6 mm (for males) and from 78.9 to 171.8 mm (for females).. A regression was performed for second and third harmonics as dependent variables, against plastral length (log transformed) as independent variable. Based on this sample, it is demonstrated that plastral pigmentation design does not change along animals’ life-history. Therefore, a plastral pigmentation shape isometry can be supposed, at least for this subspecies.Downloads
References
- Bertolero, A., Carretero, M.A., Llorente, G.A. (2005). An assessment of the reliability of growth rings counts for age determination in the Hermann’s tortoise Testudo hermanni. Amphibia-Reptilia 26:17-23.
- Castanet, J., Cheylan, M. (1979). Les marques de croissance des os et des écailles comme indicateur de l’age chez Testudo hermanni et Testudo graeca (Reptilia, Chelonia, Testudinidae). Canadian Journal of Zoology 57:1649-1655.
- Crampton, J. S. (1995). Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28:179-186.
- Forlani, A., Crestanello, B., Mantovani, S., Livoreil, B., Zane, L., Bertorelle, G., Congiu, L. (2005). Identification and characterization of microsatellite markers in Hermann's tortoise (Testudo hermanni, Testudinidae). Molecular Ecology Notes 5:228-230.
- Fritz, U., Auer, M., Bertolero, A., Cheylan, M., Fattizzo, T., Hundsdorfer, A.K., Sampayo, M.M., Pretus, J.L., Siroky, P., Wink, M. (2006). A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): Implications for taxonomy. Zoologica Scripta 35:531-543.
- Gasc, J.-P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martinez Rica, J. P., Maurin, H., Oliveira, M. E., Sofianidou, T. S., Veith, M. and Zuiderwijk, A. (eds.) (1997). Atlas of amphibians and reptiles in Europe. Societas Europea Herpetologica and Museum National d'Histoire Naturelle (IEGB/SPN), Paris.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1-9.
- Iwata, H., Ukai, Y. (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity 93:384-385.
- Kuhl, F. P., Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer graphics and image processing 18:236-258.
- Lestrel, P.E. (1997). Fourier Descriptors and their applications in Biology. Cambridge Univ. Press. United Kingdom, p. 466.
- Mirimin, L., Vernesi, C., Bertolucci, C., Mazzotti, S., Bertorelle, G. (2004). Mitochondrial dna variation and divergence in three Hermann's tortoise (Testudo hermanni) populations, Italian Journal of Zoology 71:S2:199-201.
- Rohlf, F.J., Archie, J.W. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 3:302-317.
- Stubbs, D., Swingland, I.R. (1985). The ecology of a Mediterranean tortoise (Testudo hermanni): a declining population. Canadian Journal of Zoology 63:169-180.
- Younker, J.L., Ehrlich, R. (1977). Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Systematic Biology 26:336-342.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).