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1. Introduction 
In statistics, a confounding variable (also confounding factor, a 

confound, or confounder) is an extraneous variable in a statistical model 

that correlates (directly or inversely) with both the dependent variable 

and the independent variable. A perceived relationship between an 

independent variable and a dependent variable that has been 

misestimated due to the failure to account for a confounding factor is 

termed a spurious relationship, and the presence of misestimating for 

this reason is termed omitted-variable bias. In the case of risk 

assessments evaluating the magnitude and nature of risk to human 

health, it is important to control for confounding to isolate the effect of a 

particular hazard such as a food additive, pesticide, or new drug. For 

prospective studies, it is difficult to recruit and screen for volunteers with 

the same background (age, diet, education, geography, etc.), and in 

historical studies, there can be similar variability. Due to the inability to 

control for variability of volunteers and human studies confounding is a 

particular challenge. For these reasons, experiments offer a way to avoid 

most forms of confounding. As an example, suppose that there is a 

statistical relationship between ice-cream consumption and number of 

drowning deaths for a given period. These two variables have a positive 

correlation with each other. An evaluator might attempt to explain this 

correlation by inferring a causal relationship between the two variables 

(either that ice-cream causes drowning, or that drowning causes ice-

cream consumption). However, a more likely explanation is that the 

relationship between ice-cream consumption and drowning is spurious 

and that a third, confounding, variable (the season) influences both 

variables: during the summer, warmer temperatures lead to increased 

ice-cream consumption as well as more people swimming and thus more 

drowning deaths. While specific definitions may vary, in essence a 

confounding variable fits the following four criteria, here given in a 

hypothetical situation with variable of interest "V", confounding variable 

"C" and outcome of interest "O": 

1. C is associated (inversely or directly) with O 

2. C is associated with O, independent of V 

3. C is associated (inversely or directly) with V 

4. C is not in the causal pathway of V to O (C is not a direct consequence 

of V, not a way by which V produces O) 

In a more concrete example, say one is studying the relation 

between birth order (1st child, 2nd child, etc.) and the presence of 

Down's Syndrome in the child. In this scenario, maternal age would be a 

confounding variable: 

1. Higher maternal age is directly associated with Down's Syndrome in 

the child 

2. Higher maternal age is directly associated with Down's Syndrome, 

regardless of birth order (a mother having her 1st vs 3rd child at age 50 

confers the same risk) 

3. Maternal age is directly associated with birth order (the 2nd child, 

except in the case of twins, is born when the mother is older than she was 

for the birth of the 1st child) 

4. Maternal age is not a consequence of birth order (having a 2nd child 

does not change the mother's age) 

 

2. Types of Confounding 
In some disciplines, confounding is categorized into different 

types. In epidemiology, one type is "confounding by indication" which 

relates to confounding from observational studies. Because prognostic 

factors may influence treatment decisions (and bias estimates of 
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treatment effects), controlling for known prognostic factors may reduce 

this problem, but it is always possible that a forgotten or unknown factor 

was not included or that factors interact complexly. Confounding by 

indication has been described as the most important limitation of 

observational studies. Randomized trials are not affected by confounding 

by indication due to random assignment. Confounding variables may also 

be categorised according to their source. The choice of measurement 

instrument (operational confound), situational characteristics 

(procedural confound), or inter-individual differences (person 

confound). 

 An operational confounding can occur in both experimental and non-

experimental research designs. This type of confounding occurs when 

a measure designed to assess a particular construct inadvertently 

measures something else as well.  

 A procedural confounding can occur in a laboratory experiment or a 

quasi-experiment. This type of confound occurs when the researcher 

mistakenly allows another variable to change along with the 

manipulated independent variable.  

 A person confounding occurs when two or more groups of units are 

analyzed together (e.g., workers from different occupations), despite 

varying according to one or more other (observed or unobserved) 

characteristics (e.g., gender).  

Examples: In risk assessments, factors such as age, gender, and 

educational levels often have an impact on health status and so should be 

controlled. Beyond these factors, researchers may not consider or have 

access to data on other causal factors. An example is on the study of 

smoking tobacco on human health. Smoking, drinking alcohol, and diet 

are lifestyle activities that are related. A risk assessment that looks at the 

effects of smoking but does not control for alcohol consumption or diet 

may overestimate the risk of smoking [4]. Smoking and confounding are 

reviewed in occupational risk assessments such as the safety of coal 

mining [5]. When there is not a large sample population of non-smokers 

or non-drinkers in a particular occupation, the risk assessment may be 

biased towards finding a negative effect on health. 

The above correlation-based definition, however, is 

metaphorical at best – a growing number of analysts agree that 

confounding is a causal concept, and as such, cannot be described in 

terms of correlations nor associations [1-8]. 

2.1 Causal Definition 

The concept of confounding can be formalized, and managed, 

when information is available about the data generating model (as in the 

Figure above). To be more specific, let X be some independent variable, Y 

some dependent variable, and M a causal model that asserts the cause-

effect relationships between variables in the system. To estimate the 

effect of exposure X on outcome Y, the statistician must suppress the 

effects of extraneous variables that influence both X and Y. We say that, X 

and Y are confounded by some other variable Z whenever Z is a cause of 

both X and Y. 

In the causal framework, denote P(y/do(x)) as the probability of event Y = 

y under the hypothetical intervention X = x. X and Y are not confounded 

in causal model M if and only if the following holds:  

   P(y/do(x))=P(y/x)………………………………………….(1) 

for all values X = x and Y = y, where P(y/x) is the conditional probability 

upon seeing X = x. Intuitively, this equality states that X and Y are not 

confounded whenever the observationally witnessed association 

between them is the same as the association that would be measured in a 

controlled experiment, with x randomized. 

2.2 Minimization of Confounding 

Consider the scenario of a physician deciding to administer 

drug X to a patient with gender Z. The physician knows that gender 

differences influence a patient's choice of drug as well as their chances of 

recovery. In this scenario, gender Z is a confound of administering drug X 

on recovery outcome Y since Z is a cause of both X and Y: 

 
Consequently, we will encounter the inequality: 

                                                                (2) 

Since the observational quantity contains information about 

the correlation between X and Z, and the interventional quantity does not 

(being an unbiased estimate of the effect of X on Y). Clearly the 

statistician desires the unbiased estimate, but in cases where only 

observational data is available, an unbiased estimate can only be 

obtained by "adjusting" for all confounding factors, namely, conditioning 

on their various values and averaging the result. In the case of a single 

confounder Z, this leads to the "adjustment formula": 

 

  
  

  
  

 

(3) 

Which gives an unbiased estimate for the causal effect of X on 

Y. The same adjustment formula works when there are multiple 

confounders except, in this case, the choice of a set Z of variables that 

would guarantee unbiased estimates must be done with caution. The 

criterion for a proper choice of variables is called the Back-Door [9][10] and 

requires that the chosen set Z "blocks" (or intercepts) every path from X 

to Y that ends with an arrow into X. Such sets are called "Back-Door 

admissible" and may include variables which are not common causes of X 

and Y, but merely proxies thereof. 

2.3 Decreasing the potential for confounding to occur 

A reduction in the potential for the occurrence and effect of 

confounding factors can be obtained by increasing the types and 

numbers of comparisons performed in an analysis: Increasing the 

number of confounding factors controlled for increases significance. If 

measures or manipulations of core constructs are confounded (i.e., 

operational or procedural confounds exist), subgroup analysis may not 

reveal problems in the analysis. Additionally, increasing the number of 

comparisons can create other problems (see multiple comparisons). 

Peer review is a process that can assist in reducing instances of 

confounding, either before study implementation or after analysis has 

occurred. Peer review relies on collective expertise within a discipline to 

identify potential weaknesses in study design and analysis, including 

ways in which results may depend on confounding. Similarly, replication 

can test for the robustness of findings from one study under alternative 

study conditions or alternative analyses (e.g., controlling for potential 

confounds not identified in the initial study). 

Confounding effects may be less likely to occur and act 

similarly at multiple times and locations. In selecting study sites, the 

environment can be characterized in detail at the study sites to ensure 

sites are ecologically similar and therefore less likely to have confounding 

variables. Lastly, the relationship between the environmental variables 

that possibly confound the analysis and the measured parameters can be 

studied. The information pertaining to environmental variables can then 

be used in site-specific models to identify residual variance that may be 

due to real effects[7].  

Depending on the type of study design in place, there are 

various ways to modify that design to actively exclude or control 

confounding variables[12].  

Case-control studies assign confounders to both groups, cases 

and controls, equally. For example if somebody wanted to study the cause 

of myocardial infarct and thinks that the age is a probable confounding 

variable, each 67 years old infarct patient will be matched with a healthy 

67 year old "control" person. In case-control studies, matched variables 

most often are the age and sex. Drawback: Case-control studies are 
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feasible only when it is easy to find controls, i.e., persons whose status 

vis-à-vis all known potential confounding factors is the same as that of 

the case's patient: Suppose a case-control study attempts to find the 

cause of a given disease in a person who is 1) 45 years old, 2) African-

American, 3) from Alaska, 4) an avid football player, 5) vegetarian, and 6) 

working in education. A theoretically perfect control would be a person 

who, in addition to not having the disease being investigated, matches all 

these characteristics and has no diseases that the patient does not also 

have-but finding such a control would be an enormous task. 

Cohort studies 

A degree of matching is also possible and it is often done by 

only admitting certain age groups or a certain sex into the study 

population, creating a cohort of people who share similar characteristics 

and thus all cohorts are comparable in regard to the possible 

confounding variable. For example, if age and sex are thought to be 

confounders, only 40 to 50 years old males would be involved in a cohort 

study that would assess the myocardial infarct risk in cohorts that either 

are physically active or inactive. Drawback: In cohort studies, the 

overexclusion of input data may lead researchers to define too narrowly 

the set of similarly situated persons for whom they claim the study to be 

useful, such that other persons to whom the causal relationship does in 

fact apply may lose the opportunity to benefit from the study's 

recommendations. Similarly, "over-stratification" of input data within a 

study may reduce the sample size in a given stratum to the point where 

generalizations drawn by observing the members of that stratum alone 

are not statistically significant. 

Double blinding 

Conceals from the trial population and the observers the 

experiment group membership of the participants. By preventing the 

participants from knowing if they are receiving treatment or not, the 

placebo effect should be the same for the control and treatment groups. 

By preventing the observers from knowing of their membership, there 

should be no bias from researchers treating the groups differently or 

from interpreting the outcomes differently. 

Randomized controlled trial 

A method where the study population is divided randomly in 

order to mitigate the chances of self-selection by participants or bias by 

the study designers. Before the experiment begins, the testers will assign 

the members of the participant pool to their groups (control, 

intervention, parallel), using a randomization process such as the use of a 

random number generator. For example, in a study on the effects of 

exercise, the conclusions would be less valid if participants were given a 

choice if they wanted to belong to the control group which would not 

exercise or the intervention group which would be willing to take part in 

an exercise program. The study would then capture other variables 

besides exercise, such as pre-experiment health levels and motivation to 

adopt healthy activities. From the observer’s side, the experimenter may 

choose candidates who are more likely to show the results the study 

wants to see or may interpret subjective results (more energetic, positive 

attitude) in a way favorable to their desires. 

Stratification 

As in the example above, physical activity is thought to be a 

behaviour that protects from myocardial infarct; and age is assumed to 

be a possible confounder. The data sampled is then stratified by age 

group – this means, the association between activity and infarct would be 

analyzed per each age group. If the different age groups (or age strata) 

yield much different risk ratios, age must be viewed as a confounding 

variable. There exist statistical tools, among them Mantel–Haenszel 

methods, that account for stratification of data sets. 

Controlling for confounding by measuring the known 

confounders and including them as covariates is multivariate analyses 

such as regression analysis. Multivariate analyses reveal much less 

information about the strength or polarity of the confounding variable 

than do stratification methods. For example, if multivariate analysis 

controls for antidepressant, and it does not stratify antidepressants for 

TCA and SSRI, then it will ignore that these two classes of antidepressant 

have opposite effects on myocardial infarction, and one is much stronger 

than the other. 

All these methods have their drawbacks: 

1. The best available defense against the possibility of spurious results 

due to confounding is often to dispense with efforts at stratification 

and instead conduct a randomized study of a sufficiently large sample 

taken as a whole, such that all potential confounding variables (known 

and unknown) will be distributed by chance across all study groups 

and hence will be uncorrelated with the binary variable for 

inclusion/exclusion in any group. 

2. Ethical considerations: In double blind and randomized controlled 

trials, participants are not aware that they are recipients of sham 

treatments and may be denied effective treatments[8]. There is 

resistance to randomized controlled trials in surgery because patients 

would agree to invasive surgery which carries risks under the 

understanding that they were receiving treatment. 
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