Ascorbic Acid Metabolisms: A review

Mohamed H. E.1 and Al-Rasheed2

1Department of Physiology; College of Medicine, University of Al Baha, Saudi Arabia
2Department of Food and Nutrition; Faculty of Home Economics, King Abadulaziz University, Saudi Arabia

*Corresponding Author
Dr. Mohamed H. E.
Department of Physiology;
College of Medicine,
University of Al Baha, Saudi Arabia
E-mail: helkhider@bu.edu.sa

Abstract
Ascorbic acid (vitamin C) is a water-soluble, hexonic sugar, with a molecular weight of 176. It is known to play vital roles in numerous functions of the body, especially in hydroxylation reactions. Its requirement by animals may be increased when challenged in the form of immune and metabolic stress. The main objective of this brief review is to outline the catabolic and anabolic pathways of ascorbic acid as well as its metabolic functions.

Keywords:
Epidermolysis bullosa,
Genetically determined, Recessive dystrophic subtype.

1. Analytical Methods
The determination of ascorbic acid in various matrices can be carried out by several analytical techniques. Of these, high-pressure liquid chromatography [1] and spectrophotometry [2] are the most common techniques applied. The former is preferable, as the spectrophotometric determination is very difficult and requires tedious pre-treatment to eliminate interfering substances. The "Chemistry of Ascorbic Acid" by Szent Gygöri [3] has reported the discovery of a carbohydrate derivative from the adrenal cortex of the ox, this derivative possessing strong reducing properties. The physiological activity appeared to be associated with the reducing power [4].

In the presence of high concentrations of H2O2, ascorbic acid is rapidly hydrolyzed in solution at pH 7.0 to L-diketogulonate (2,3-DKG), which is very unstable and degrades further [6]. Analysis showed that L-erythulose (ERU) and oxalate were the primary degradation products of ascorbic acid regardless of which compound was used as the starting material. In the presence of high concentrations of H2O2, 2,3-DKG produces L-threonic, oxalate, and CO2.

2. Ascorbic Acid Biosynthesis
L-ascorbic acid is biosynthetically formed in almost all mammals studied, except in several primates and guinea pigs [10]. Ascorbic acid is a product of glucose metabolism in the glucuronate pathway [11]. The anabolic pathway of ascorbic acid utilizes glucose as the initial substrate [12].

3. Ascorbic Acid Catabolism
The metabolic fate of ascorbic acid and its derivative in animals depends on a number of factors including animal species, route of ingestion, quantity and nutritional status. The catabolic pathways of ascorbic acid proceed through xylitol or through L13 ribulose to D-xyllose as initial step for the conversion of L to D-sugars. Another pathway for the catabolism of ascorbate is by C2 - C3 carbon cleavage, to give rise to oxalate and a 4-carbon compound as intermediates. The major two ascorbic acid degradation pathways at physiological pH are the oxidative and the non-oxidative ones. The major pathway has erthyrolulose as the major product of the non-oxidative degradation of dehydroascorbic acid (DHA) and also 2,3-diketogulonic acid [12]. DHA rapidly hydrolyzes in solution at pH 7.0 to L-diketogulonate (2,3-DKG), which is very unstable and degrades further [6].

4. Metabolic Functions of Ascorbic acid
Over the last few years, it has been recognized that ascorbic acid is involved in a great variety of biochemical processes beyond the scope of prevention of scurvy [13]. The metabolic functions of ascorbic acid in cattle have been repeatedly reviewed [14-16]. Apart from fermentation of dietary ascorbic acid in the rumen, fundamental differences between ruminants and monogastric animals with respect to ascorbic acid metabolism are not known.

5. Hydroxylation reactions
In most cases, ascorbic acid assists biosynthetic processes and regulatory mechanisms which comprise hydroxylation reactions according to the mixed function type [17]. Apart from its participation in collagen formation, ascorbic acid is a co-substrate for a variety of mono- and dioxygenases for redox reactions in biochemical processes, such as the conversion of dopamine to noradrenaline and for the metabolism of cholesterol and carnitine [13]. L-ascorbic acid participates in the biosynthesis of collagen, carnitnin, catecholamines, cartilage, skin, skeletal and connective tissues [18]. The synthesis of carnitnine could be of special importance for cows in the postpartum phase, because at that time large amounts of stored fat are mobilized [19]. Carnitnine enables fatty acids to enter the mitochondria, where they are broken down to acetyl-coA by &b oxidation. Vitamin C also participates in the modulation of complex biochemical pathways, which are an essential part of the normal metabolism of immune cells [20].

6. Anti-oxidant function
One of the major metabolic roles of ascorbic acid is its participation as antioxidant agent and free radical scavenger in numerous cellular oxidation processes [22]. This activity is attributed to its properties as an electron donor. Vitamin C is capable of protecting...
against oxidative injuries in the aqueous compartments and lipid bilayer of cell membranes [23]. It also scavenges aqueous-phase reactive oxygen radicals (ROS) by very rapid electron transfer and thus inhibits lipid peroxidation [24]. Vitamin C plays an important role in the defence against oxidative damage, especially in leukocytes. It also protects the structural integrity of the cells of the immune system [25]. Vitamin C was found to be effective against superoxide, hydroxyl radicals, hydrogen peroxide, peroxo radicals and singlet oxygen, thereby protecting phagocytes from oxygen radicals entering the cytoplasm from the phagosome [26]. Vitamin C also functions in reducing the toxic oxygen radicals. Acetylene, studied in the radical scavenging activity of vitamin E [27]. The ascorbate radical (semi-dehydroascorbate) is reduced to ascorbate by NADH-dependent semi-dehydroascorbate reductase[27].

Furthermore, vitamin C serves as a radical scavenger and general antioxidant for cellular metabolites including unsaturated fatty acids, vitamins A and E, and carotenoids [28]. The anti-oxidative function of ascorbic acid is evident when treating nitrate poisoning in cattle. Nitrate from the feed is reduced to nitrite in the rumen and leads to the formation of methaemoglobin in the blood [29]. Due to its antioxidant potential, ascorbic acid was proved to be effective in curing post parturient haemoglobinuria in buffaloes [30].

7. Role of Vitamin C in the metabolism of minerals

Vitamin C is necessary for iron metabolism, maintenance of normal tyrosine oxidation and acts as a hydrogen transport agent [31]. It plays a role in the maturation of erythrocytes, absorption and mobilisation of iron and in keeping constant the haemoglobin content [32]. Ascorbic acid keeps iron in the reduced, bivalent form and thus methaemoglobin is reduced [33]. The relations between iron, as a generator of free radicals, and vitamin C have been studied [34,35]. In addition to the influence of cortisol on the synthesis of ascorbic acid [36], it has also been hypothesized that ascorbic acid itself could influence adrenal gland function. Ketotic cows injected subcutaneously/intravenously with ascorbic acid showed a transient elevation of the glucose level and a lowering of the ketone level in the blood [37]. An effect of ascorbic acid on the metabolism of calcium could also be relevant for dairy cows. By administering high doses of ascorbic acid, the hypocalcaemia of cows at an early stage of lactation has been also be relevant for dairy cows. By administering high doses of ascorbic acid, the hypocalcaemia of cows at an early stage of lactation has been successfully treated [38].

References


© ASD Publisher All rights reserved.